Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
A sensitive and accurate method for cell-free microRNAs quantification using a dye-based chemistry and droplet digital PCR technology is described.
Circulating (of cell-free) microRNAs (miRNAs) are released from cells into the blood stream. The amount of specific microRNAs in the circulation has been linked to a disease state and has the potential to be used as disease biomarker. A sensitive and accurate method for circulating microRNA quantification using a dye-based chemistry and droplet digital PCR technology has been recently developed. Specifically, using Locked Nucleic Acid (LNA)-based miRNA-specific primers with a green fluorescent DNA-binding dye in a compatible droplet digital PCR system it is possible to obtain the absolute quantification of specific miRNAs. Here, we describe how performing this technique to assess miRNA amount in biological fluids, such as plasma and serum, is both feasible and effective.
MicroRNAs (miRNAs) are released into blood circulation by potentially all the cells of the organism, as a consequence of active release or necrotic and apoptotic processes. Cell-free miRNAs have been detected in the bloodstream either as free stable molecules or linked to lipoproteins or enveloped inside exosomes and microvesicles 1-3. They are believed to function as cell-to-cell communicators 4, and their amount changes in the presence of cancer, cardiac disorders or autoimmune diseases 5-7. Their accurate and reproducible quantification is the basis for their evaluation as disease biomarkers. However, for several reasons already described elsewhere 8,9, miRNA quantification in serum or plasma, as well as other body fluids, could be very challenging 10,11. We recently developed a method for the absolute quantification of circulating miRNAs, based on miRNA-specific LNA primers and DNA-binding dye droplet digital PCR (ddPCR) technology 12. This methodology has been applied to the validation of miRNA breast cancer biomarkers 13,14.
After the partitioning of each reverse-transcribed miRNA molecule inside a nanoliter-sized droplet, it is possible to count the copy number of each miRNA in each sample, basically counting the number of green, and therefore positive, fluorescent droplets. As soon as a PCR reaction occurs, a positive count is achieved, without the need to establish a standard curve or taking PCR efficiency into account in target amount calculation, as it happens with quantitative RT-PCR (RT-qPCR). In addition, ddPCR proved to be more sensitive and accurate than RT-qPCR in circulating miRNA quantification 15. In this article we present the detailed protocol of this methodology, discussing the most relevant steps andspecifically considering serum and plasma clinical samples.
MicroRNA Isolation from Plasma or Serum
Note: Plasma and serum preparation is a relevant step in circulating miRNA quantification. There is no preferred procedure for plasma and serum preparation. The only important thing to consider is that all the samples from the same experiment must be processed using exactly the same workflow. Start from 200 µl serum or plasma. Total RNA can be isolated from serum or plasma using commercially available kits.
1. Protocol for Total RNA (including miRNA) Isolation
2. MicroRNA Reverse Transcription
3. cDNA Dilution
4. Droplet Generation and PCR
Note: Droplet generation should be performed on 8 samples at a time. Technical replicates are not required, due to the high reproducibility of this technology 12,15.A No Template Control (NTC) sample should be run in every plate and for each different ddPCR condition.
5. Droplet Reading
The absolute amount of specific miRNAs per ml of plasma or serum can be determined using a green fluorescent DNA-binding dye and droplet digital PCR technology. Figure 1 presents the process of positive-droplets selection, which determines the final miRNA concentration (copies/µl) in the amplification reaction calculated by the analysis software. The amount of each miRNA in the blood is very different, being some miRNA species more abundant than others. Using a 1:50 ...
Circulating miRNAs are present in blood at extremely low concentrations and the amount of RNA that can be extracted from plasma and serum samples is low. For this reason, they are difficult to quantify with other techniques such as microarray and RNA sequencing. Moreover, there is a generalized lack of agreement on data normalization and the presence of endogenous "reference" miRNAs in the blood. In this context, a sensitive technology like droplet digital PCR, capable of counting the number of miRNA copies per m...
The authors have nothing to disclose.
Supported by funding from the Italian Association for Cancer Research (AIRC) to MF (MFAG 11676) and to MN (Special Program Molecular Clinical Oncology - 5 per mille n. 9980, 2010/15) and from the Italian Ministry of Instruction, University and Research FIRB 2011 to MN (Project RBAPIIBYNP).
Name | Company | Catalog Number | Comments |
miRNeasy Mini Kit | Qiagen | 217004 | Columns for total RNA, including miRNA, extraction from serum/plasma |
100 nmole RNA oligo Cel-miR-39-3p | Integrated DNA Technologies | Custom | Sequence: UCACCGGGUGUAAAUCAGCUUG |
Universal cDNA synthesis kit II, 8-64 rxns | Exiqon | 203301 | Kit for microRNA reverse transcription |
MicroRNA LNA PCR primer set | Exiqon | 204000-206xxx and 2100000-21xxxxx | Primers for miRNA amplification inside droplets |
QX200 droplet generator | BioRad | 186-4002 | Instrument used for droplet reading |
QX200 droplet reader | BioRad | 186-4003 | Instrument used for droplet generation |
QuantaSoft software | BioRad | 186-3007 | Software for data collection and analysis |
PX1 PCR plate sealer | BioRad | 181-4000 | Plate sealer |
DG8 droplet generator cartridges and gaskets | BioRad | 186-4008 | Cartridges used to mix sample and oil to generate droplets |
QX200 ddPCR EvaGreen supermix | BioRad | 186-4033/36 | PCR supermix |
QX200 droplet generator oil for EvaGreen dye | BioRad | 186-4005 | Oil for droplet generation |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone