Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Monocytes are integral components of the human innate immune system that rely on glycolytic metabolism when activated. We describe a flow cytometry protocol to measure glucose transporter expression and glucose uptake by total monocytes and monocyte subpopulations in fresh whole blood.
Monocytes are innate immune cells that can be activated by pathogens and inflammation associated with certain chronic inflammatory diseases. Activation of monocytes induces effector functions and a concomitant shift from oxidative to glycolytic metabolism that is accompanied by increased glucose transporter expression. This increased glycolytic metabolism is also observed for trained immunity of monocytes, a form of innate immunological memory. Although in vitro protocols examining glucose transporter expression and glucose uptake by monocytes have been described, none have been examined by multi-parametric flow cytometry in whole blood. We describe a multi-parametric flow cytometric protocol for the measurement of fluorescent glucose analog 2-NBDG uptake in whole blood by total monocytes and the classical (CD14++CD16-), intermediate (CD14++CD16+) and non-classical (CD14+CD16++) monocyte subpopulations. This method can be used to examine glucose transporter expression and glucose uptake for total monocytes and monocyte subpopulations during homeostasis and inflammatory disease, and can be easily modified to examine glucose uptake for other leukocytes and leukocyte subpopulations within blood.
Monocytes are a major component of the human innate immune system that are rapidly mobilized to sites of infection and inflammation1. Activation of monocytes is critical for limiting acute damage by pathogens and is also central to the pathogenesis of several chronic diseases, including atherosclerosis2, cancer3, and HIV4,5.
The metabolism of resting and activated monocytes differs dramatically, with resting monocytes utilizing oxidative metabolism and activated monocytes utilizing glycolytic metabolism (i.e., fermentation of glucose to lactate)6. Activation of monocytes induces expression of glucose transporters that allows for increased glucose uptake for glycolytic metabolism7. Monocyte glucose transporter 1 (Glut1) is one such transporter upregulated during activation and its expression has been shown to lead to production of pro-inflammatory cytokines in vitro and in adipose tissue of obese mice8. Infection of a monocytic cell line by Kaposi sarcoma associated herpesvirus leads to cellular upregulation of Glut19, and we recently showed that during chronic HIV infection an increased percentage of Glut1-expressing monocytes are present during untreated and combination antiretroviral therapy-treated infection10. Taken together, these studies show that glucose uptake and glycolytic metabolism by monocytes are important aspects of many inflammatory diseases. Thus, a simple method to measure monocyte Glut1 expression and glucose uptake during homeostasis and inflammatory disease is likely to be of use to a wide range of researchers.
Human monocytes are heterogeneous, being comprised of three distinct subsets that can be examined by differential expression of the cell surface markers CD14 and CD1611,12. Classical monocytes express a high level of CD14 but do not express CD16 (CD14++CD16-), intermediate monocytes express a high level of CD14 and an intermediate level of CD16 (CD14++CD16+), and non-classical monocytes express a low level of CD14 and a high level of CD16 (CD14+CD16++). Monocytes that express CD16 are termed CD16+ monocytes, which compared to CD16- monocytes have high expression of inflammatory cytokines and the ability to more effectively present antigens13,14. Approximately 10% of monocytes express CD16 during homeostasis with higher percentages observed during inflammation15. Monocyte subpopulations are associated with certain disease states and could be useful biological markers of disease and disease progression16.
Our goal was to identify a method that can measure glucose transporter expression and glucose uptake by human monocytes and monocyte subpopulations in conditions as close to physiological conditions as possible. Previous studies measured monocyte glucose transporter expression and glucose uptake17,18, though these methods examined isolated monocytes that can have altered protein expression compared to physiological conditions19, and no previous study has examined human monocyte subpopulations. Using multi-parametric flow cytometry, we describe a method to examine glucose transporter expression and uptake of the fluorescent glucose analog 2-NBDG by total monocytes and monocyte subpopulations (based on CD14 and CD16 expression) within whole unmanipulated blood.
NOTE: HIV-infected and HIV-uninfected subjects were recruited from the Infectious Diseases Unit at The Alfred Hospital in Melbourne, VIC, Australia, and from the local community, respectively. Informed consent was obtained from all participants, and the research was approved by The Alfred Hospital Research and Ethics Committee.
1. Glut1 Cell Surface Detection on Monocytes and Monocyte Subpopulations
2. Glucose Uptake by Monocytes
3. Data Acquisition and Analysis
NOTE: A knowledge of flow cytometry and data analysis is assumed.
Compensation must be performed for individual fluorochromes to prevent fluorescence spillover. Monocytes are first enriched by gating based on forward and side scatter. The plots presented are representatives of at least six independent experiments conducted on whole blood from six or more participants as previously reported10. Figure 1A shows the initial gating of monocytes by cell scatter and exclusion of T cells by gating within the CD3- populatio...
The protocol described here details a simple method to examine glucose transporter expression and fluorescent glucose analog uptake by monocyte and monocyte subpopulations in whole blood. By assessing 2-NBDG uptake in whole blood, this technique allows for conditions similar to those in vivo. A previous study examined 6-NBDG uptake in monocytes separated from whole blood by density centrifugation17. However, this study did not examine monocyte subpopulations and separation of monocytes from whole bloo...
The authors have nothing to disclose.
This research was funded by the Australian Centre for HIV and Hepatitis Virology Research (ACH2) and a 2010 developmental grant (CNIHR) from the University of Washington Center for AIDS Research (CFAR), an NIH funded program under award number AI027757 which is supported by the following NIH Institutes and Centers (NIAID, NCI, NIMH, NIDA, NICHD, NHLBI, NIA). C.S.P is a recipient of the CNIHR and ACH2 grant. SMC is a recipient of a National Health and Medical Research Council of Australia (NHMRC) Principal Research Fellowship. The authors gratefully acknowledge the contribution to this work of the Victorian Operational Infrastructure Support Program received by the Burnet Institute. We acknowledge the assistance of Geza Paukovic and Eva Orlowski-Oliver from the AMREP Flow Cytometry Core Facility for flow cytometry training and technical advice. We thank Angus Morgan for media coaching and organization of the video shoot. Our gratitude to Jesse Masson and Jehad Abdulaziz K. Alzahrani for lab assistance during the video shoot. We thank the efforts of Dr David Simar at the School of Medical Sciences, UNSW, Australia who offered critical methodological advice. C.S.P would like to thank www.nice-consultants.com for graphic consultations.
AUTHORS' CONTRIBUTION:
C.S.P conceived the project, designed and conducted experiments, analyzed and interpreted data, and wrote the manuscript. J.J.A interpreted data and wrote the manuscript. T.R.B wrote the manuscript. J.M.M interpreted data, made critical intellectual suggestions, and reviewed the manuscript. S.M.C interpreted data, made critical intellectual suggestions and reviewed the manuscript.
Name | Company | Catalog Number | Comments |
VACUETT Tube 9 ml ACD-B anticoagulant tubes | Greiner Bio-One GmbH | 455094 | |
5 ml sterile polypropylene tubes | BD Biosciences | 352063 | |
Albumin from Bovine Serum (BSA) | Sigma-Aldrich | A7906 | |
16% formaldehyde solution | Electron Microscopy Science | 15710 | |
BD FACS lysing solution (10X) | BD Biosciences | 349202 | Dilute BD FACS lysing solution 1/10 with deionized water for working concentration (store for up to 1 week at 4°C) |
anti-CD3-PE | BD Biosciences | 555340 | |
anti CD14-APC | BD Biosciences | 555399 | |
anti-CD16-PECy7 | BD Biosciences | 557744 | |
anti-Glut1-FITC | R & D Systems | FAB1418F | |
IgG2b-FITC | R & D Systems | IC0041F | |
2-NBDG | Life technologies | N13195 | Suspend 5 mg of 2-NBDG into 1 ml of deionized water to make a 14.60 mM stock solution (keep for up to 6 months at 4°C). To make the working 2-NBDG concentration, dilute stock 1/100 with 1X DPBS. Cover with foil. (store for up to 1 week at 4°C) |
Dulbecco’s Phosphate Buffered Saline (1X) | Life technologies | 14190-144 | To make wash solution, add 0.5 g BSA per 100 ml DPBS (store for up to 2 weeks at 4°C) |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone