Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
* Wspomniani autorzy wnieśli do projektu równy wkład.
Here we describe a protocol aimed at investigating the impact of aberrant splicing on drug resistance in solid tumors and hematological malignancies. To this goal, we analyzed the transcriptomic profiles of parental and resistant in vitro models through RNA-seq and established a qRT-PCR based method to validate candidate genes.
Drug resistance remains a major problem in the treatment of cancer for both hematological malignancies and solid tumors. Intrinsic or acquired resistance can be caused by a range of mechanisms, including increased drug elimination, decreased drug uptake, drug inactivation and alterations of drug targets. Recent data showed that other than by well-known genetic (mutation, amplification) and epigenetic (DNA hypermethylation, histone post-translational modification) modifications, drug resistance mechanisms might also be regulated by splicing aberrations. This is a rapidly growing field of investigation that deserves future attention in order to plan more effective therapeutic approaches. The protocol described in this paper is aimed at investigating the impact of aberrant splicing on drug resistance in solid tumors and hematological malignancies. To this goal, we analyzed the transcriptomic profiles of several in vitro models through RNA-seq and established a qRT-PCR based method to validate candidate genes. In particular, we evaluated the differential splicing of DDX5 and PKM transcripts. The aberrant splicing detected by the computational tool MATS was validated in leukemic cells, showing that different DDX5 splice variants are expressed in the parental vs. resistant cells. In these cells, we also observed a higher PKM2/PKM1 ratio, which was not detected in the Panc-1 gemcitabine-resistant counterpart compared to parental Panc-1 cells, suggesting a different mechanism of drug-resistance induced by gemcitabine exposure.
Despite considerable advances in cancer treatment, resistance of malignant cells to chemotherapy, either intrinsic or acquired upon prolonged drug exposure, is the major reason for treatment failure in a wide range of leukemia and solid tumors1.
In order to delineate the mechanisms underlying drug resistance, in vitro cell line models are developed by stepwise selection of cancer cells resistant to chemotherapeutic agents. This procedure mimics the regimes used in the clinical settings and therefore allows in depth investigation of relevant resistance mechanisms. Resistant cells which survive the treatment are then distinguished from parental sensitive cells by using cell viability/cytotoxicity assays2. In vitro drug resistance profiles of primary cells have been shown to be significantly related to clinical response to chemotherapy3.
High-throughput cytotoxicity assays constitute a convenient method to determine drug sensitivity in vitro. Herein, the viability of cells is assessed by for instance the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide - MTT assay4, which is based on metabolic conversion of certain substrates (i.e., tetrazolium salts) into colored products, thereby reflecting the mitochondrial activity of cells. Alternatively, the cellular protein content can be quantified using the sulforhodamine B (SRB) assay5. Here, the number of viable cells is proportional to the optical density (OD) measured at an appropriate wavelength in a spectrophotometer, with no need of extensive and time-consuming cell counting procedures. The growth inhibition induced by a certain chemotherapeutic drug can be calculated based on the OD of the wells in which cells were treated with a test agent and compared with the OD of untreated control cells. A dose-response curve is obtained by plotting drug concentrations versus percentages of viable cells relative to control cells. Finally, drug sensitivity can be reported as the concentration that results in 50% of cell growth inhibition as compared to untreated cells (IC50).
The mechanisms underlying drug resistance include many different abnormalities, such as alterations affecting gene expression of determinants of drug activity and cellular metabolism. These molecular lesions, including mutations, aberrations at a transcriptional and post-transcriptional level as well as disturbed epigenetic regulation often affect genes involved either in drug metabolism or apoptosis6.
Alternative pre-mRNA splicing and its intricate regulation have recently received considerable attention as a novel entity that may dictate drug resistance of cancer cells7. Up to 95% of human genes are alternatively spliced in normal cells by means of this tightly regulated process which produces many different protein isoforms from the same gene. Alternative splicing is often deregulated in cancer and several tumors are characterized by altered splicing of a growing number of genes involved in drug metabolism (i.e., deoxycytidine kinase, folylpolyglutamate synthetase, or Multidrug resistance proteins)6,8. However, comprehensive analysis of splicing profiles of drug resistant cells is painfully lacking. Therefore, it is imperative to develop high throughput methods for alternative splicing analysis. This could help to develop more effective therapeutic approaches.
During the last decade, the rapid development of next generation sequencing (NGS) technologies has enriched biomedical research with new insights into the molecular mechanisms governing regulation of genome expression and their role in various biological processes9. RNA-sequencing (RNA-seq) is a powerful sub-application of NGS in the field of transcriptomics. It allows a genome-wide profiling (both qualitatively and quantitatively) of the expression patterns of thousands of genes simultaneously and is well suited for the characterization of novel coding mRNAs as well as long non-coding RNA, miRNA, siRNA, and other small RNA classes (e.g., snRNA and piRNA)10,11.
RNA-Seq has many advantages over previous technologies for transcriptome characterization (e.g., Sanger sequencing and expression microarrays). It is not based on existing genome annotation, it has a single-nucleotide level of resolution and it has a broader dynamic range for expression level estimation. Briefly, the basic experimental workflow of RNA-seq experiments consists of polyadenylated transcript (mRNA) selection and fragmentation, followed by conversion into cDNA, library construction and finally, massively parallel deep sequencing12,13. Due to rapid drop of sequencing costs over the last few years, RNA-seq is gradually replacing other technologies and significant efforts are being made to improve the library preparation protocols. For instance, it is now possible to retain the strand information of mRNA transcripts by marking the second strand cDNA with deoxyuridine triphosphate (dUTP) and, prior to PCR amplification, digesting the marked strand with uracil-DNA-glycosilase (UDG). This process enhances the accuracy of gene annotation and estimation of the expression levels14,15.
The analysis and interpretation of RNA-seq data require complex and powerful computational software packages and processing within bioinformatic pipelines16,17. First, the raw reads undergo quality control by removing technical and biological artefacts and discarding (trimming) the sequences which do not reach stringent quality requirements. Subsequently the reads for each sample are mapped to a reference genome and indexed into gene-level, exon-level, or transcript-level, in order to determine the abundance of each category. Depending on the application, refined data are then computed through statistical models for the identification of allele-specific expression, alternative splicing, gene fusions and single nucleotide polymorphisms (SNPs)12. Finally, differential analysis on selected level (i.e., gene expression or alternative splicing) can be used to compare samples obtained under different conditions.
Differential splicing analysis describes the differences in splice site usage between two samples. An increasing number of software packages devoted to this purpose are available based on different statistical models, performances and user interface18. Among these, MATS (Multivariate Analysis of Transcript Splicing) emerges as a freely available and precise computational tool based on a Bayesian statistical framework and designed to detect differential splicing events from either single or paired end RNA-seq data. Starting from the aligned (.bam) files, MATS can detect all major types of alternative splicing events (exon skipping, alternative 3' splice site, alternative 5' splice site, mutually exclusive exons and intron retention - also see Figure 1).
First, the software identifies reads which support a certain splice event, for instance exon skipping, and classifies them into two types. "Inclusion reads" (for the canonical splice event) map within the investigated exon and span the junctions between that specific exon and the two upstream and downstream flanking exons. "Skipping reads" (for the alternative splice event) span the junction between the two flanking exons. Subsequently, MATS returns the normalized inclusion level for both the canonical and alternative events and compares values between samples or conditions. Ultimately, it calculates P-value and false discovery rate (FDR) assuming that the difference in the variant ratio of a gene between two conditions exceeds a given user-defined threshold for each splicing event19,34.
Following differential splicing analysis in conjunction with RNA-seq, an extensive experimental validation is warranted in order to identify true-positive gene candidates18. Quantitative reverse transcribed-polymerase chain reaction (qRT-PCR) is the most commonly used and optimal method in validation of candidates obtained from RNA-Seq analysis20. The aim of this paper is to provide a robust methodology to investigate drug resistance-related splicing profiles in solid tumors and hematological malignancies. Our approach utilizes RNA-seq-based transcriptome profiling of selected cell line models of drug resistant cancers in combination with an established qRT-PCR method for the validation of candidate genes implicated in drug resistance.
The human leukemia cell line models used in this study included pediatric T-cell acute lymphoblastic leukemia (T-ALL) cell line CCRF-CEM (CEM-WT), its two glucocorticoid (GC)-resistant subclones CEM-C7H2-R5C3 (CEM-C3) and CEM-C7R5 (CEM-R5)21,22 and the methotrexate (MTX)-resistant subline CEM/R30dm23. Although current therapies based on GCs and MTX establish clinical benefit in about 90% of cases, the emergence of GC-resistance still represents an unsolved problem with an unclear molecular mechanism. To isolate GC-resistant sub-clones, CEM-WT cells were cultured in 1 µM dexamethasone (Dex) for 2 to 3 weeks. MTX-resistant subline CEM/R30dm was developed through repeated short- term (24 hr) exposure of CEM-WT cells to 30 µM MTX as a mimic of clinical protocols. Interestingly, this cell line also displayed cross-resistance to Dex (unpublished results) for which the mechanism is not fully understood.
The solid tumor model investigated in the present study is pancreatic ductal adenocarcinoma, notorious for its extraordinary refractoriness to chemotherapy. To this end, we selected Panc-1 cell line and its gemcitabine-resistant sub-clone Panc-1R obtained by continuous incubation with 1 µM of the drug24. Here we describe an approach to discover novel mechanisms underlying in-vitro drug resistance by combining three protocols: colorimetric cytotoxicity assays to assess drug sensitivity in leukemic cells and cancer cells from solid tumors, RNA-seq-based pipeline to identify novel splice variants related to drug sensitivity/resistance and RT-PCR and qRT-PCR analysis to validate potential candidates.
1. Characterization of Drug Resistance Profiles through Cytotoxicity Assays
2. RNA Isolation and Library Preparation for RNA-sequencing
3. Detection of Differential Splicing from Sequencing Reads
4. Validation of the Results by RT-PCR and qRT-PCR Assays
The cytotoxicity assays described in the protocol provide a reliable and robust method to assess the resistance of cancer cells to chemotherapeutic agents in vitro. By means of the MTT assay, sensitivity to Dex was determined in four T-ALL cell lines, including Dex-sensitive parental CEM-WT cells, and three Dex-resistant sublines: CEM/R30dm, CEM-R5 and CEM-C3. Two different concentration ranges had to be used due to the large difference in sensitivity between CEM-WT (2 µM - ...
Here we describe a novel approach that combines well-established cytotoxicity screening techniques and powerful NGS-based transcriptomic analyses to identify differential splicing events in relation to drug resistance. Spectrophotometric assays are convenient and robust high-throughput methods to assess drug sensitivity in in vitro cancer models and represent the first choice for many laboratories performing cytotoxicity screenings. Troubleshooting as well as possible variations for this method were extensively ...
The authors have nothing to disclose.
The authors would like to acknowledge prof. J.J. McGuire, prof. R. Kofler and dr. K. Quint for providing the resistant cell lines used in this work. The study has been founded by grants from Cancer Center Amsterdam (CCA) Foundation (to JC, EG and RS), the KiKa (Children Cancer-free grant for AW) foundation, the Law Offices of Peter G. Angelos Grant from the Mesothelioma Applied Research Foundation (to VEG and EG), Associazione Italiana per la Ricerca sul Cancro (AIRC), Istituto Toscano Tumori (ITT), and Regione Toscana Bando FAS Salute (to EG).
Name | Company | Catalog Number | Comments |
Sulforhodamine B | Sigma-Aldrich | 230162 | |
Trichloroacetic acid | Sigma-Aldrich | 251399 | |
CCRF-CEM | ATCC, Manassas, VA, USA | ATCC CCL-119 | |
Panc-1 | ATCC, Manassas, VA, USA | ATCC CRL-1469 | |
DMEM high glucose | Lonza, Basel, Switzerland | 12-604F | |
RPMI-1640 | Gibco, Carlsbad, CA, USA | 11875093 | |
Fetal bovine and calf serum | Greiner Bio-One, Frickenhausen, Germany | 758093 | |
penicillin G streptomycin sulphate | Gibco, Carlsbad, CA, USA | 15140122 | |
Tris(hydroxymethyl)-aminomethane | Sigma Aldrich | 252859 | |
MTT formazan | Sigma Aldrich | M2003 | |
Anthos-Elisa-reader 2001 | Labtec, Heerhugowaard, Netherlands | UV-Vis 96-well plate spectrophotometer | |
Greiner CELLSTAR 96 well plates | Greiner/Sigma | M0812-100EA | |
Trypsin/EDTA Solution 100 ml | Lonza, Basel, Switzerland | CC-5012 | |
CELLSTAR Cell Culture Flasks 25 cm2 | Greiner Bio-One, Frickenhausen, Germany | 82051-074 | |
CELLSTAR Cell Culture Flasks 75 cm3 | Greiner Bio-One, Frickenhausen, Germany | 82050-856 | |
Phosphate Buffered Saline (NaCl 0.9%) | B.Braun Melsungen AG, Germany | 362 3140 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone