Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
The production of healthy laboratory-reared ticks is essential to studies on tick biology, and tick-pathogen interactions. Here we demonstrate a simple protocol for immature tick feeding that is cost-effective and less stressful to mice.
Ixodes scapularis, the vector of Lyme disease, is one of the most important disease vectors in the eastern and Midwestern United States. This species is a three host tick that requires a blood meal from a vertebrate host for each development stage, and the adult females require a blood meal for reproduction. Larval ticks attach to their host for 3 - 5 days for feeding and drop off the host when fully engorged. This dependency on several different hosts and the lengthy attachment time for engorgement complicates tick rearing in the laboratory setting. However, to understand tick biology and tick-pathogen interactions, the production of healthy, laboratory-reared ticks is essential. Here, we demonstrate a simple, cost-effective protocol for immature tick feeding on mice. We modified the existing protocols for decreased stress on mice and increased tick feeding success and survival by using disposable cages without mesh bottoms to avoid contact of ticks with water contaminated with mice urine and feces.
Ticks are obligate hematophagous ectoparasites of vertebrates and are distributed worldwide. In the United States, at least 11 species of ticks are vectors of pathogens of public health importance1. Ixodes scapularis is responsible for transmission of several pathogens such as the causative agents of Lyme disease (Borrelia burgdorferi) relapsing fever (B. miyamotoi), human granulocytic anaplasmosis (Anaplasma phagocytophilum), and babesiosis (Babesia spp.). Despite the importance of I. scapularis as a disease vector, collecting these arachnids in abundance from the wild for studies in the lab is not always feasible. Therefore, the production of healthy laboratory-reared ticks is essential to studies on tick biology, and tick-pathogen interactions.
The life cycle of all hard ticks (family Ixodidae), including I. scapularis, consists of the egg and three active stages: larva, nymph, and adult. Each active stage feeds on a vertebrate host. The complex interactions that take place between ticks and their hosts over several days of attachment and feeding are nearly impossible to replicate using artificial feeders, and are unlikely to provide enough numbers of fed ticks for mass rearing2,3,4. Therefore, live mice and rabbits are used most frequently as hosts for rearing immature (larvae and nymphs), and mature stages (adults) of ticks, respectively. The requirement of multiple hosts for blood feeding during each developmental stage complicates tick rearing, and is time and cost intensive5,6,7. Most tick rearing protocols require keeping mice in a suspended wire grid floor cage7,8 or in a cylindrical cage of such dimensions that the animal cannot move freely and groom itself6,9,10.
These cylindrical cages are later transferred to a shoebox cage with a wire grid. Engorged, detached ticks are then collected from the water underneath. However, this method results in exposing fed ticks to water contaminated with urine and feces that can increase fungal growth and tick mortality9. In addition, it increases the possibility of tick escape from the water trough, as well as causing stress to mice. To circumvent these problems, we here demonstrate larval tick feeding on mice within plastic shoebox-type disposable cages. This method allows the normal behavior of mice, increases engorged tick recovery, and decreases tick mortality due to contamination.
The protocol (Number-00682) outlined below is approved by the Institutional Animal Care and Use Committee (IACUC) at the University of Nevada Reno and follows the guidelines of the University of Nevada, Reno's animal research ethics committee. Briefly, mice were anesthetized with isoflurane and a nose cone was used for maintaining continuous isoflurane levels for 20 min. A vet ointment was used to prevent drying of eyes under anesthesia. Toe pinch was used to ascertain the anesthesia level and breathing rate was measured throughout the procedure. Mice were kept in individual cages and monitored until consciousness was regained. Mice were used only once for tick feeding and were euthanized post tick recovery. Euthanasia was carried out by the Laboratory of Animal Medicine staff personnel. CO2 and cervical dislocation were used for euthanizing animals.
NOTE: Working on ticks requires use of complete personal protective equipment. For counting immature ticks, wear white lab coats, long nitrile gloves to cover the sleeve opening of the lab coat capped with rubber bands, and closed-toe shoes. For infesting mice with ticks, use a hair net, disposable coveralls, long-sleeved gloves over the sleeves, and foot covers. Use white or light colored coveralls to detect wayward ticks. Periodically check gloves and sleeves for ticks.
1. Preparing Room for Animal Housing
2. Counting Ticks for Mouse Infestation
3. Infesting Mice with Immature Ticks
4. Collecting Ticks from Mice
5. Storage of Fed Ticks
We modified existing tick rearing protocols6,10 for improved feeding efficiency and reduced stress on the mouse host. The results demonstrate that the standard shoebox style mouse cages are well suited for tick rearing. The white bedding provided a good contrast for easy collection of fed ticks. Most ticks climbed up the walls of the containers after feeding and were easy to collect. In addition, the tight fitted lid of the dispos...
Critical Steps within the Protocol
It is important to have several levels of safety measures when rearing ticks to avoid accidental escape. Use of sticky tape and a water moat are critical to ensure safety. It is important to keep the anesthetized mouse on a heating pad to keep the body temperature constant. We also found that shaving the mouse does not provide any extra benefit for tick attachment. An individual mouse can be kept in the same cage for one week in a designated "tick room" ...
The authors have nothing to disclose.
The authors acknowledge the help from the staff of Laboratory Animal Medicine, University of Nevada, Reno. MM received funding from Nevada INBRE.
Name | Company | Catalog Number | Comments |
Puralube vet ointment | Amazon | Available from any Pet store or online store | |
Disposable mouse cage | Innovive, San Diego, CA | MV 2 | Set of bottom and lid |
White Alpha dri bedding | Lab Supply, Fort Worth, TX | ALPHA-Dri™ |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone