Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Using a pBIBAC-GW binary vector makes generating transgenic plants with intact single-copy insertions, an easy process. Here, a series of protocols is presented that guide the reader through the process of generating transgenic Arabidopsis plants, and testing the plants for intactness and copy number of the inserts.
When generating transgenic plants, generally the objective is to have stable expression of a transgene. This requires a single, intact integration of the transgene, as multi-copy integrations are often subjected to gene silencing. The Gateway-compatible binary vector based on bacterial artificial chromosomes (pBIBAC-GW), like other pBIBAC derivatives, allows the insertion of single-copy transgenes with high efficiency. As an improvement to the original pBIBAC, a Gateway cassette has been cloned into pBIBAC-GW, so that the sequences of interest can now be easily incorporated into the vector transfer DNA (T-DNA) by Gateway cloning. Commonly, the transformation with pBIBAC-GW results in an efficiency of 0.2–0.5%, whereby half of the transgenics carry an intact single-copy integration of the T-DNA. The pBIBAC-GW vectors are available with resistance to Glufosinate-ammonium or DsRed fluorescence in seed coats for selection in plants, and with resistance to kanamycin as a selection in bacteria. Here, a series of protocols is presented that guide the reader through the process of generating transgenic plants using pBIBAC-GW: starting from recombining the sequences of interest into the pBIBAC-GW vector of choice, to plant transformation with Agrobacterium, selection of the transgenics, and testing the plants for intactness and copy number of the inserts using DNA blotting. Attention is given to designing a DNA blotting strategy to recognize single- and multi-copy integrations at single and multiple loci.
When generating transgenic plants, usually the objective is to have the integrated transgene(s) stably expressed. This can be achieved by intact single copy integrations of a transgene. Multiple integrations can lead to increased expression of a transgene, but also to gene silencing. Silencing of transgenes is more likely if inserted sequences are arranged in tandem or inverted repeats1,2,3,4. Binary vectors are used as shuttles in Agrobacterium-mediated transformation experiments to deliver the sequences of interest into plant genomes. The number of integrations into a plant genome is dependent on the copy number of the binary vector in Agrobacterium tumefaciens5,6. Many commonly used binary vectors are high copy vectors, and therefore yield a high average transgene copy number: 3.3 to 4.9 copies in Arabidopsis5.
The number of T-DNA integrations can be lowered by using binary vectors that have a low-copy number in A. tumefaciens, such as BIBAC7, or by launching a T-DNA from the A. tumefaciens chromosome5. The average number of transgene integrations in such cases is below 25,8,9,10. Due to being single-copy in A. tumefaciens, and also in Escherichia coli, BIBAC-derivatives can maintain and deliver constructs as large as 150 kb11.
GW-compatible BIBAC vectors10,12 allow easy introduction of genes of interest into the vector using Gateway cloning. The use of Gateway technology greatly simplifies the cloning procedure, but also overcomes common problems associated with large low-copy-number vectors13,14, such as a low DNA yield and a limited selection of unique restriction sites available for cloning7,11. The pBIBAC-GW derivatives are available with either resistance to Glufosinate-ammonium (pBIBAC-BAR-GW) or DsRed fluorescence in seed coats (pBIBAC-RFP-GW) for selection in plants (Figure 1)10,12. For both vectors, a kanamycin resistance gene is used as the selection marker in bacteria.
The pBIBAC-GW vectors combine: (1) easy design and genetic manipulation in E. coli, and (2) intact single-copy integrations in planta at high efficiency. The pBIBAC-GW vectors yield on average 1.7 integrations in Arabidopsis with approximately half of the transgenic plants carrying a single integrated T-DNA10.
Stable expression of transgenes is a requirement for most transgenics generated. Stable transgene expression can be achieved by intact, single-copy integrations. Working with transgenic plants carrying intact, single-copy integrations is, however, even more important if for example, the aim is to study the efficiency of chromatin-based processes, such as mutagenesis, recombination, or repair, and the dependence of these processes on the genomic location and the chromatin structure at the insertion site. For our interest, to study the dependence of oligonucleotide directed mutagenesis (ODM) on the local genomic context, a set of reporter lines with intact, single-copy integrations of a mutagenesis reporter gene was generated (Figure 2)10. Using this set of lines, it was shown that the ODM efficiency varies between transgenic loci integrated at different genomic locations, despite the transgene expression levels being rather similar.
1. Inserting Sequences of Interest into Binary Vector
2. Preparation of A. tumefaciens for Floral Dipping of Arabidopsis
3. Arabidopsis Transformation
4. Characterizing Transgenics for the Number and Integrity of T-DNA Integrations
Using the BIBAC-GW system, reporter constructs for studying ODM in plants were generated10. Constructs were designed in the Gateway Entry vector pENTR-gm12 and inserted into pBIBAC-BAR-GW (Figure 1) using the Gateway LR recombination reaction.
Arabidopsis were transformed with pDM19, a BIBAC-BAR-GW plasmid with an mTurquoise-eYFP reporter carrying a tr...
Critical to generating transgenics with single, intact integrations of a transgene is the choice of the binary vector used. BIBAC family vectors have been used to deliver sequences of interests to many plant species23,24,25,26,27,28. BIBAC vectors, including BIBAC-GW, yield single-copy integrations with high efficiency: the a...
The authors declare no competing financial interests or other conflicts of interest.
This research is supported by the Dutch Technology Foundation STW (12385), which is part of the Netherlands Organization for Scientific Research (NWO), and which is partly funded by the Ministry of Economic Affairs (OTP Grant 12385 to MS). We thank Carol M. Hamilton (Cornell University, United States) for providing pCH20, the backbone of the BIBAC-GW vectors.
Name | Company | Catalog Number | Comments |
Kanamycin sulphate monohydrate | Duchefa | K0126 | |
Gentamycin sulphate | Duchefa | G0124 | |
Rifampicin | Duchefa | R0146 | |
Tetracycline hydrochloride | Sigma | T-3383 | |
DB3.1 competent cells | Thermo Scientific - Invitrogen | 11782-018 | One Shot ccdB Survival 2 T1R Competent Cells (A10460) by Invitrogen or any other ccdB resistant E. coli strain can be used instead |
DH10B competent cells | Thermo Scientific - Invitrogen | 18290-015 | |
Gateway LR clonase enzyme mix | Thermo Scientific - Invitrogen | 11791-019 | |
tri-Sodium citrate dihydrate | Merck | 106432 | |
Trizma base | Sigma-Aldrich | T1503 | |
EDTA disodium dihydrate | Duchefa | E0511 | |
Proteinase K | Thermo Scientific | EO0491 | |
Bacto tryptone | BD | 211705 | |
Yeast extract | BD | 212750 | |
Sodium chloride | Honeywell Fluka | 13423 | |
Potassium chloride | Merck | 104936 | |
D(+)-Glucose monohydrate | Merck | 108346 | |
Electroporation Cuvettes, 0.1 cm gap | Biorad | 1652089 | |
Electroporator Gene Pulser | BioRad | ||
Magnesium sulfate heptahydrate | Calbiochem | 442613 | |
D(+)-Maltose monohydrate 90% | Acros Organics | 32991 | |
Sucrose | Sigma-Aldrich | 84100 | |
Silwet L-77 | Fisher Scientific | NC0138454 | |
Murashige Skoog medium | Duchefa | M0221 | |
Agar | BD | 214010 | |
Glufosinate-ammonium (Basta) | Bayer | 79391781 | |
Restriction enzymes | NEB | ||
Ethidium Bromide | Bio-Rad | 1610433 | |
Electrophoresis system | Bio-Rad | ||
Sodium hydroxide | Merck | 106498 | |
Hydrochloric acid | Merck | 100316 | |
Blotting nylon membrane Hybond N+ | Sigma Aldrich | 15358 | or GE Healthcare Life Sciences (RPN203B) |
Whatman 3MM Chr blotting paper | GE Healthcare Life Sciences | 3030-931 | |
dNTP | Thermo Fisher | R0181 | |
Acetylated BSA | Sigma-Aldrich | B2518 | |
HEPES | Sigma-Aldrich | H4034 | |
2-Mercaptoethanol | Merck | 805740 | |
Sephadex G-50 Coarse | GE Healthcare Life Sciences | 17004401 | or Sephadex G-50 Medium (17004301) |
Dextran sulfate sodium salt | Sigma-Aldrich | D8906 | |
Sodium Dodecyl Sulfate | US Biological | S5010 | |
Salmon Sperm DNA | Sigma-Aldrich | D7656 | |
Sodium dihydrogen phosphate monohydrate | Merck | 106346 | |
Storage Phosphor screen and casette | GE Healthcare Life Sciences | 28-9564-74 | |
Phosphor imager | GE Healthcare Life Sciences | Typhoon FLA 7000 | |
UV Crosslinker | Stratagene | Stratalinker 1800 | |
cling film (Saran wrap) | Omnilabo | 1090681 | |
Agarose | Thermo Scientific - Invitrogen | 16500 | |
Boric acid | Merck | 100165 | |
DNA marker ‘Blauw’; DNA ladder. | MRC Holland | MCT8070 | |
DNA marker ‘Rood’; DNA ladder | MRC Holland | MCT8080 | |
Hexanucleotide Mix | Roche | 11277081001 | |
Large-Construct Kit | Qiagen | 12462 | |
Heat-sealable polyethylene tubing, clear | various providers | the width of the tubing should be wider than that of blotting membrane | |
Heat sealer | |||
Membrane filter disk | Merck | VSWP02500 | |
Magnesium chloride | Merck | 105833 | |
Hybridization mesh | GE Healthcare Life Sciences | RPN2519 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone