Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Simple methods are described for demonstrating the production of cytotoxic amyloids following infection of pulmonary endothelium by Pseudomonas aeruginosa.
Patients who survive pneumonia have elevated death rates in the months following hospital discharge. It has been hypothesized that infection of pulmonary tissue during pneumonia results in the production of long-lived cytotoxins that can lead to subsequent end organ failure. We have developed in vitro assays to test the hypothesis that cytotoxins are produced during pulmonary infection. Isolated rat pulmonary endothelial cells and the bacterium Pseudomonas aeruginosa are used as model systems, and the production of cytoxins following infection of the endothelial cells by the bacteria is demonstrated using cell culture followed by direct quantitation using lactate dehydrogenase assays and a novel microscopic method utilizing ImageJ technology. The amyloid nature of these cytotoxins was demonstrated by thioflavin T binding assays and by immunoblotting and immunodepletion using A11 anti-amyloid antibody. Further analyses using immunoblotting demonstrated that oligomeric tau and Aβ were produced and released by endothelial cells following infection by P. aeruginosa. These methods should be readily adaptable to analyses of human clinical samples.
Patients who survive pneumonia have elevated death rates in the months following hospital discharge1,2,3,4,5,6. In most cases, death occurs by some type of end-organ failure including renal, pulmonary, cardiac, or liver events, as well as stroke5,6. The reason for the elevated death rate in this patient population has never been established.
Pneumonia is classified as being either community-acquired or hospital-acquired (nosocomial), and agents that can cause pneumonia include bacteria, viruses, fungi, and chemicals. One of the major causes of nosocomial pneumonia is the bacterium Pseudomonas aeruginosa. P. aeruginosa is a gram-negative organism that uses a type III secretion system to transfer various effector molecules, termed exoenzymes, directly to the cytoplasm of target cells7,8. During infection of pulmonary endothelial cells, the exoenzymes target various intracellular proteins, including an endothelial form of the microtubule-associated protein tau9,10,11,12, leading to endothelial barrier breakdown resulting in severe pulmonary edema, decreased pulmonary function and, oftentimes, death.
As stated previously, patients who survive the initial pneumonia have elevated death rates in the first 12 months following hospital discharge. A potential mechanism for explaining this phenomenon is that some type of long-lived toxin is generated during the initial infection that leads to poor long-term outcome. Two observations support this possibility. First, cultured pulmonary endothelial cells that are treated initially with P. aeruginosa fail to proliferate for up to a week after the bacteria are killed by antibiotics13. Second, long-lived prions and agents with prion characteristics have been demonstrated in various human and animal diseases, particularly diseases associated with the nervous system14,15.
Methods for examining the potential production of long-lived cytotoxic agents during pulmonary infection have never been described. Here a series of simple in vitro assays are outlined that can be used for investigating cytotoxin production and activity following infection using a common pneumonia causing agent, P. aeruginosa. These assays should be readily adaptable to investigate possible cytotoxin induction following infection using other agents that cause pneumonia, and the supernatants that are generated also should be useful for investigating effects of the cytotoxins in whole organs or animals. Finally, the assays that are outlined here most likely will be adaptable to test animal and human biological fluids for the production of cytotoxins during pneumonia.
All animal procedures were reviewed and approved by the Institutional and Animal Care Committee of the University of South Alabama and were performed in accordance with all federal, state, and local regulations. Primary cultures of rat pulmonary microvascular endothelial cells (PMVECs) were obtained from the Cell Culture Core Facility at the University of South Alabama’s Center for Lung Biology. Cells were prepared using previously described procedures16.
1. Generation of Cytotoxic Supernatants
Note: Here, we use two different strains of P. aeruginosa: PA103, which has an intact type III secretion system capable of transferring the exoenzymes ExoU and ExoT to target cells during infection, and ∆PcrV, which lacks a type III secretion system and is incapable of transferring exoenzymes to target cells following inoculation.
2. Analysis of Cytotoxic Supernatants
A simple in vitro assay has been developed to assay for the presence of cytotoxins in supernatants of cells infected with the bacterium P. aeruginosa. Basically, culture medium from infected cells is collected 4 h after bacterial addition, the bacteria are removed by filter sterilization of the culture supernatant, and then the sterile supernatant is added to a new population of cells. The cells are then observed 21 - 24 h after the addition of supernatant and cell killi...
Here, simple in vitro methods are outlined which allow demonstration of the generation of cytotoxic amyloids during infection with a pneumonia causing organism. These methods include a cell culture cytotoxicity assay, immunoblotting, quantitation of cell killing using a novel microscopic method, and ThT binding. Analyses of the cytotoxic agents have demonstrated that they are amyloid in nature (Figure 2 and Figure 4) and exhibit charact...
None to report.
This research was funded in parts by NIH grants HL66299 to TS, RB, and SL, HL60024 to TS, and HL136869 to MF.
Name | Company | Catalog Number | Comments |
Rabbit anti beta amyloid | Thermo | 71-5800 | |
A11 amyloid oligomer antibody | StressMarq | SPC-506D | |
T22 anti-tau oligomer antibody | EMD Millipore | ABN454 | |
Thioflavin T | Sigma Aldrich | T3516 | |
HBSS | Gibco | 14025-092 | |
PBS | Gibco | 10010-023 | |
0.22 micron syringe filters | Millipore | SLGP033RS | |
DMEM | Gibco | 11965-092 | |
HRP Goat antirabbit IgG | Abcam | ab6721-1 | |
Strains PA103 and ΔPcrV | These strains of P. aeruginosa were obtained from Dr. Dara Frank, University of Wisconsin Medical College, Milwaukee, WI | ||
FITC Griffonia lectin | Sigma Aldrich | L9381 | |
TRITC Helix pomatia lectin | Sigma Aldrich | L1261 | |
Agar | Fisher | BP1423-500 | |
0.22 micron nitrocellulose | BioRad | 162-0112 | |
Type 2 collagenase | Worthington | LS004176 | |
Fetal bovine serum | Hyclone | SH30898.03IH | |
PenStrep | Gibco | 15070063 | |
Carbenicillin Disodium salt | Sigma | C1389 | |
Microcetrifugation concentrators- 10,000 MW cut-off | Millipore | UFC801008 | |
Potassium phosphate dibasic | Sigma | 795496-500G | |
Magnesium phosphate heptahydrate | MP Biomedicals | MP021914221 | |
Citric Acid | G Biosciences | 50-103-5801 | |
Sodium phosphate dibasic heptahydrate | Sigma | S9506-500G | |
Countess Automated Cell Counter | Invitrogen | C10277 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone