JoVE Logo

Zaloguj się

Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

Orthotopic intracranial injection of tumor cells has been used in cancer research to study brain tumor biology, progression, evolution, and therapeutic response. Here we present fluorescence molecular tomography of tumor xenografts, which provides real-time intravital imaging and quantification of a tumor mass in preclinical glioblastoma models.

Streszczenie

Tumorigenicity is the capability of cancer cells to form a tumor mass. A widely used approach to determine if the cells are tumorigenic is by injecting immunodeficient mice subcutaneously with cancer cells and measuring the tumor mass after it becomes visible and palpable. Orthotopic injections of cancer cells aim to introduce the xenograft in the microenvironment that most closely resembles the tissue of origin of the tumor being studied. Brain cancer research requires intracranial injection of cancer cells to allow the tumor formation and analysis in the unique microenvironment of the brain. The in vivo imaging of intracranial xenografts monitors instantaneously the tumor mass of orthotopically engrafted mice. Here we report the use of fluorescence molecular tomography (FMT) of brain tumor xenografts. The cancer cells are first transduced with near infrared fluorescent proteins and then injected in the brain of immunocompromised mice. The animals are then scanned to obtain quantitative information about the tumor mass over an extended period of time. Cell pre-labeling allows for cost effective, reproducible, and reliable quantification of the tumor burden within each mouse. We eliminated the need for injecting imaging substrates, and thus reduced the stress on the animals. A limitation of this approach is represented by the inability to detect very small masses; however, it has better resolution for larger masses than other techniques. It can be applied to evaluate the efficacy of a drug treatment or genetic alterations of glioma cell lines and patient-derived samples.

Wprowadzenie

Cancer is one of the leading causes of illness-related deaths in humans in the industrialized world. With an extremely high death toll, new treatments are urgently required. Glioblastoma multiforme (GBM) is an extremely lethal type of brain cancer, composed of heterogeneous populations of brain tumor, stromal, and immune cells. According to the Central Brain tumor registry of the USA, the incidence of primary malignant and non-malignant brain tumors is approximately 22 cases per 100,000. Approximately 11,000 new cases are expected to be diagnosed in the USA in 20171.

Preclinical studies investigate the likelihood of a drug, procedure, or treatment to be effective prior to testing in humans. One of the earliest laboratory steps in preclinical studies is identifying potential molecular targets for drug treatment by using cancer cells implanted in a host organism, defined as human xenograft models. Within this context, intracranial brain tumor xenograft models using patient-derived xenografts (PDXs) have been widely used to study brain tumor biology, progression, evolution, and therapeutic response, and more recently for biomarkers development, drug screening, and personalized medicine2,3,4.

One of the most affordable and non-invasive in vivo imaging methods to monitor intracranial xenografts is bioluminescence imaging (BLI)5,6,7,8. However, some BLI limitations include substrate administration and availability, enzyme stability, and light quenching and scattering during imaging acquisition9. Here we report the infrared FMT as an alternative imaging method to monitor preclinical glioblastoma models. In this method, signal acquisition and quantification of intracranially implanted PDXs, expressing a near-infrared fluorescent protein iRFP72010,11 (henceforth termed as FP720) or turboFP635 (henceforth termed as FP635), is performed with a FMT imaging system. Using the FMT technology, the orthotopic tumors can be monitored in vivo before, during, or after treatment, in a non-invasive, substrate-free, and quantitative manner for preclinical observations.

Protokół

The use of experimental research animals and infectious agents, such as lentivirus to transduce the cancer cells, require prior approval by the institutional animal care program and by the institutional biosafety committee. This protocol follows the animal care guidelines of the University of California San Diego (UCSD).

1. Labeling of Glioblastoma Cells with FP635 or FP720 Construct

  1. Produce and purify lentivirus according to the protocol described by Tiscornia et al.12
  2. Culture approximately 2.0 x 106 cells from a human glioma cell line with DMEM plus 10% fetal bovine serum (FBS) in a 15-cm dish; or culture 2.0 x 106 human glioblastoma patient-derived (GBM-PDX) spheres with DMEM/F12 1:1 medium with B27 supplement plus human recombinant epidermal growth factor (EGF; 20 ng/mL) and FGF (10 ng/mL) in a T75 flask.
  3. Maintain all cells at 37 °C, 5% CO2, and 100% relative humidity.
  4. Dissociate the cells.
    1. For the glioma cells: remove the supernatant from the plates and adding 3-5 mL of trypsin 1X to the glioma cells.
    2. For the GBM spheres: collect the cells by pipetting the cells into a 15-mL tube.
      1. Spin down the GBM spheres at 200 x g for 5 min using a tabletop centrifuge at room temperature.
      2. Remove the supernatant and add 3-5 mL of cell detachment solution.
    3. Incubate all cells at 37 °C for 10-15 min.
  5. Carefully dissociate the cells by pipetting up and down several times (ensure that spheres and glioma cells are completed dissociated) and spin down at 200 x g for 5 min.
  6. Remove the supernatant and resuspend the cells with 5 mL of medium by pipetting up and down several times. Determine the cell viability by trypan blue exclusion.
  7. Plate 1.0 x 106 of target cells in a 10-cm dish with 5 mL of medium by pipetting.
  8. Transduce cells with lentivirus expressing fluorescent proteins at multiplicity of infection (MOI) 5 as is described by Tiscornia et al.12 and incubate at 37 °C.
  9. After 24 h, remove the medium from the transduced cells, add 5 mL of fresh medium, and incubate for additional 48 h at 37 °C.
  10. Dissociate the infected cells into a single-cell suspension as described in steps 1.4-1.6. Spin down the cells at 200 x g for 5 min and resuspend in 500 µL of sorting solution (phosphate-buffered saline (PBS) with 1% FBS).
  11. Pipette the cell suspension into FACS tubes. Co-stain the cells with 1 µL/mL of 4',6-diamidino-2-phenylindole (DAPI) dihydrochloride to exclude dead cells. Negative controls are required to set up the flow cytometer gates (non-transduced cells and non-transduced cells/ DAPI stained).
  12. Sort the fluorescent-positive/DAPI-negative cells into sorting solution, as described by Basu et al.13, and collect the sorted cells into a 15-mL conical tube.
  13. Spin down the sorted cells at 200 x g for 5 min, remove the supernatant, and resuspend in 5 mL of culture medium. Seed the sorted cells in a 10-cm dish by pipetting. Incubate at 37 °C for at least 48-72 h.
  14. Expand the sorted cells by dissociating the cells following steps 1.4-1.6 and plating into multiple dishes for in vivo experiments.
    NOTE: For more details about cell sorting preparation and purification, see Basu et al.13

2. Intracranial Injection of iRFP-tagged Glioblastoma Cells into Immunodeficient Mice

NOTE: Before starting the surgery, make sure that the surgical room and tools are clean for the procedure. Use immunodeficient athymic nude (Foxn1nu) male or female mice, between 4-5 weeks old and 17-19 g for intracranial injections. Animals should be housed for at least 3 days after arrival and before surgery.

  1. Cell preparation
    1. Harvest and dissociate fluorescent positive-glioma cells into a single-cell suspension (steps 1.4-1.6) and resuspend 0.5 or 1.0 x 106 cells in 2-5 µL of PBS per injection per animal. Pipette the cell suspension into a 1.5-mL microcentrifuge tube and place on ice.
  2. Anesthesia preparation and administration
    1. Prepare 200 µL of saline solution containing ketamine (100 mg/kg) and xylazine (10 mg/kg) per 20 grams of mouse body weight. Weigh the animals and calculate the appropriate dose of anesthesia.
    2. Provide an intraperitoneal injection of anesthesia and apply ophthalmic ointment to the eyes to prevent dehydration. For more details about this step see Kathleen et al.14 Place the animal on a pre-warmed water thermal pad at 37 °C.
    3. Check that the animals are anesthetized by monitoring the toe pinch response (pedal reflex), usually within 5-10 min.
  3. Intracranial injection
    1. Load a 5 µL Hamilton syringe (blunt tip needle) with cell suspension and mount in the probe holder.
    2. Place the mouse in a small animal stereotactic frame and fix the head using the ear bars and the incisor adapter following the described details by Cetin et al.15
    3. Disinfect the head with 70% ethanol and betadine solution. Make sure that the surgical site is complete sterile. Perform a middle incision with a small scalpel and separate the skin and connective tissues.
    4. Place the Hamilton syringe on the bregma point using the micromanipulator.
    5. Move the probe holder 1.0 mm anteroposterior and 2.0 mm lateral from the bregma point. Mark this position with a pencil.
    6. At this location, carefully make a hole in the skull with a micromotor hand-held drill by applying slight pressure downward until the blood vessels become visible. Do not disrupt the arachnoid mater and brain parenchyma.
    7. Introduce the needle into the burr hole and advance 3.0 mm below the pial surface.
    8. Set up the volume (2-5 µL) and flow rate (1 µL/min) of injection using a motorized stereotaxic injector or manually perform the injection.
    9. After the injection, remove the needle gradually by ascending 1.0 mm every 1 min and clean the injection site with 70% ethanol.
    10. Close the skin wound with surgical staples or by making surgical sutures (often referred to as stitches) and see Kathleen et al.14 for more details.
  4. Animal recovery
    1. Transfer the animal to a water thermal pad (37 °C) and monitor the body temperature, respiration rate, and heart rate, until full recovery. Administer analgesia per standard protocols.
      NOTE: For more information about the stereotactic procedure, surgery, and coordinates, see other reports5,14,15.

3. FMT Imaging

NOTE: According to the experimental aim, the iRFP-tagged glioblastoma cells can be monitored in vivo before, during, or after treatment. For imaging purpose, anesthetize animals using an isoflurane induction chamber, maintain in an imaging cassette during the scanning, and image in the docking station of the FMT imager.

  1. Remove the animal from the cage and place in the isoflurane induction chamber. Close the chamber and turn on oxygen flow and vaporizer to 3-5%.
  2. Monitor the animal until it is completely anesthetized, usually within 1-2 min. Unconscious animals should not respond to external stimuli.
  3. Remove the anesthetized animal from the chamber and put the animal in the imaging cassette by placing the head adaptor first, followed by placing the animal facing down. Make sure that the head is located in the center of the cassette.
  4. Place the top plate of the cassette on top and tighten the adjustment knobs until 17 mm.
  5. Once that the animal is secure in the imaging cassette, proceed to imaging by inserting the cassette into the internal docking station of the FMT imager, where the isoflurane is pumped to keep the animal anesthetized.
  6. Run the imager and analyzer software by double-clicking the software icon.
  7. In the "Experimental tab" window, select the "Database" and "Study group".
  8. Go to the "Scan tab" window and select the subject to image by clicking "select subject". Also, select the laser channel in the "Laser channel" panel. For the FP635-labeled cells, select "laser channel 635 nm", and for FP720-labeled cells, select "laser channel 680 nm".
  9. Acquire an image by clicking the "Capture" option in the "Scan tab" window. Then, adjust the scan field by clicking and dragging the scan field in the captured image to a determined number of source locations, usually within 20-25 sources for the ipsilateral side.
  10. Check the "Add to reconstruction queue" option and hit "Scan" in the "Scan tab" window.
  11. Wait until the scanning is completed and then remove the imaging cassette from the docking station.
  12. Remove the top plate of the cassette and place the animal back into the cage.
  13. Repeat the steps 3.1-3.12 for the rest of the animals.

4. Image Analysis

  1. From the imager and analyzer software, select the "Analysis tab" window.
  2. Load the dataset and the subject to analyze by clicking the "+" button in the "Dataset selection" panel of the "Analysis tab" window.
  3. Once the image has been loaded in the "Analysis tab" window, perform the region of interest (ROI) analysis by selecting the ellipsoid icon, located in the upper left corner of the "Analysis tab" window.
  4. Adjust the threshold to zero in the "statistic data" panel by right clicking the "threshold" column in the "Analysis tab" window.
  5. The total value in the "Statistic data" panel represents the signal from the fluorescent-tagged glioblastoma cells implanted in the mouse brain.
  6. Repeat steps 4.2-4.4 for the rest of the animals. Load or remove a new subject by clicking the "+" or "−" button, respectively, in the "Dataset selection" panel of the "Analysis tab" window.
    NOTE: For more information about the FMT imaging and software operation, see20.

Wyniki

Glioblastoma cells U87EGFRvIII (U87 cells over-expressing the EGF receptor variant III) were cultured according to the step 1.2. Lentivirus was produced and purified according to step 1.1. The viral concentration was determined by p24 ELISA analysis. Cells were transduced with lentivirus carrying infrared fluorescent proteins according to step 1.8. The plasmid encoding FP72010,11 was kindly provided by Dr. V.V. Verkhusha and the F...

Dyskusje

Tumor xenografts have been extensively used in cancer research and a number of well-established imaging techniques has been developed: BLI; magnetic resonance imaging (MRI); positron emission tomography (PET), computed tomography (CT); FMT. Each of these approaches comes with pros and cons, but ultimately complement each other with the type of information provided. One of the most commonly used in vivo imaging technology is BLI5,6,

Ujawnienia

The authors declare no conflicts of interests.

Podziękowania

We thank Dr. Frederick Lang, MD Anderson Cancer Center for GBM-PDX neurospheres. This work was supported by the Defeat GBM Research Collaborative, a subsidiary of National Brain Tumor Society (Frank Furnari), R01-NS080939 (Frank Furnari), the James S. McDonnell Foundation (Frank Furnari); Jorge Benitez was supported by an award from the American Brain Tumor Association (ABTA); Ciro Zanca was partially supported by an American-Italian Cancer Foundation postdoctoral research fellowship. Frank Furnari receives salary and additional support from the Ludwig Institute for Cancer Research.

Materiały

NameCompanyCatalog NumberComments
DMEM/High Glucose HyClone/GESH30022.1
DMEM/F12 1:1 Gibco11320-082
FBSHyClone/GESH30071.03
AccutaseInnovative cell technologiesAT-104
TrypsinHyClone/GESH30236.01
B27 supplementGibco17504044
human recombinant EGF Stemcell Technologies2633
human recombinant FGFStemcell Technologies2634
DPBSCorning21-031-00
FACS tubesFalcon352235
DAPIThermoFisher Scientific62248
BlasticidinThermoFisher ScientificA1113903
p24 ELISA Clontech632200
XylazineAkornNDC 59399-110-20
KetamineZoetisNADA 043-403Controlled substance
OintmentDechronNDC 17033-211-38
Absorbable sutureCpMedicalVQ392
5 ul syringeHamilton26200-UCatalog number as sold by Sigma-Aldrich
Cell SorterSonySH8007
Mouse stereotaxic frame Stoelting51730
Motorized stereotaxic injectorStoelting53311
Micromotor hand-held drillForedomK1070
Mouse warming pad Ken Scientific CorporationTP-22G
Fluorescence Tomography System PerkinElmerFMT 2500 XL
TrueQuant Imaging Software Perkin Elmer 7005319
Ultra-centrifuge Optima L-80 XPBeckman Coulter392049
Tissue Culture 100mm DishesOlympus Plastics25-202
Tissue Culture 150mm DishesOlympus Plastics25-203
Tissue Culture Flasks T75Corning430720U
50 mL conical tubesCorning430290
15 mL conical tubesOlympus Plastics28-101
Centrifuge Avanti J-20Beckman CoulterJ320XP-IM-5
Tube, Polypropylene, Thinwall, 5.0 mLBeckman Coulter326819
Tube, Thinwall, Polypropylene, 38.5 mL, 25 x 89 mmBeckman Coulter326823
Athymic nude miceCharles River LaboratoriesStrain Code  490 (Homozygous)Prior approval by the Institutional Animal Care Program and by the Institutional Biosafety Committee required.   

Odniesienia

  1. Ostrom, Q. T., et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2009-2013. Neuro-Oncology. 18 (suppl_5), v1-v75 (2016).
  2. Pauli, C., et al. Personalized In Vitro and In Vivo Cancer Models to Guide Precision Medicine. Cancer Discovery. 7 (5), 462-477 (2017).
  3. Stewart, E. L., et al. Clinical Utility of Patient-Derived Xenografts to Determine Biomarkers of Prognosis and Map Resistance Pathways in EGFR-Mutant Lung Adenocarcinoma. Journal of Clinical Oncology. 33 (22), 2472-2480 (2015).
  4. Gao, H., et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat Med. 21 (11), 1318-1325 (2015).
  5. Ozawa, T., James, C. D. Establishing Intracranial Brain Tumor Xenografts With Subsequent Analysis of Tumor Growth and Response to Therapy using Bioluminescence Imaging. J. Vis. Exp. (41), e1986 (2010).
  6. Kondo, A., et al. An experimental brainstem tumor model using in vivo bioluminescence imaging in rat. Child's Nervous System. 25 (5), 527-533 (2009).
  7. Nyati, S., Young, G., Ross, B. D., Rehemtulla, A., Kozlov, S. V. . ATM Kinase: Methods and Protocols. , 97-111 (2017).
  8. Kondo, A., et al. Longitudinal assessment of regional directed delivery in a rodent malignant glioma model. J Neurosurg Pediatr. 4 (6), 592-598 (2009).
  9. Badr, C. E., Badr, C. E. . Bioluminescent Imaging: Methods and Protocols. , 1-18 (2014).
  10. Shcherbakova, D. M., Verkhusha, V. V. Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat Meth. 10 (8), 751-754 (2013).
  11. Filonov, G. S., et al. Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat Biotech. 29 (8), 757-761 (2011).
  12. Tiscornia, G., Singer, O., Verma, I. M. Production and purification of lentiviral vectors. Nat. Protocols. 1 (1), 241-245 (2006).
  13. Basu, S., Campbell, H. M., Dittel, B. N., Ray, A. Purification of Specific Cell Population by Fluorescence Activated Cell Sorting (FACS). J. Vis. Exp. (41), e1546 (2010).
  14. Pritchett-Corning, K. R., Luo, Y., Mulder, G. B., White, W. J. Principles of rodent surgery for the new surgeon. J Vis Exp. (47), (2011).
  15. Cetin, A., Komai, S., Eliava, M., Seeburg, P. H., Osten, P. Stereotaxic gene delivery in the rodent brain. Nat. Protocols. 1 (6), 3166-3173 (2007).
  16. Benitez, J. A., et al. PTEN regulates glioblastoma oncogenesis through chromatin-associated complexes of DAXX and histone H3.3. Nature Communications. 8, 15223 (2017).
  17. Kirschner, S., et al. Imaging of Orthotopic Glioblastoma Xenografts in Mice Using a Clinical CT Scanner: Comparison with Micro-CT and Histology. PLOS ONE. 11 (11), e0165994 (2016).
  18. Mannheim, J. G., et al. Standardization of Small Animal Imaging-Current Status and Future Prospects. Molecular Imaging and Biology. , (2017).
  19. Engblom, C., et al. Osteoblasts remotely supply lung tumors with cancer-promoting SiglecFhigh neutrophils. Science. 358 (6367), (2017).
  20. Lauber, D. T., et al. State of the art in vivo imaging techniques for laboratory animals. Laboratory Animals. 51 (5), 465-478 (2017).
  21. Zanca, C., et al. Glioblastoma cellular cross-talk converges on NF-κB to attenuate EGFR inhibitor sensitivity. Genes & Development. 31 (12), 1212-1227 (2017).
  22. Villa, G. R., et al. An LXR-Cholesterol Axis Creates a Metabolic Co-Dependency for Brain Cancers. Cancer Cell. 30 (5), 683-693 (2016).
  23. Liu, F., et al. EGFR Mutation Promotes Glioblastoma through Epigenome and Transcription Factor Network Remodeling. Molecular Cell. 60 (2), 307-318 (2015).

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

Fluorescence Molecular TomographyFMTGlioblastoma XenograftsIn Vivo ImagingBrain Tumor BiologyCancer ResearchDrug DiscoveryTumor AggressivenessTumor HeterogeneityTreatment ResponsivenessNon invasiveQuantitativeXenograft ModelsGlioblastoma CellsLentivirusFluorescent ProteinFlow CytometryCell SortingSingle Cell SuspensionPBSIn Vivo Experiments

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone