JoVE Logo

Zaloguj się

Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

Here we describe the standard protocol for the detection of β-galactosidase activity in early whole mouse embryos and the method for paraffin sectioning and counterstaining. This is an easy and quick procedure to monitor gene expression during development that can also be applied to tissue sections, organs or cultured cells.

Streszczenie

The Escherichia coli LacZ gene, encoding β-galactosidase, is largely used as a reporter for gene expression and as a tracer in cell lineage studies. The classical histochemical reaction is based on the hydrolysis of the substrate X-gal in combination with ferric and ferrous ions, which produces an insoluble blue precipitate that is easy to visualize. Therefore, β-galactosidase activity serves as a marker for the expression pattern of the gene of interest as the development proceeds. Here we describe the standard protocol for the detection of β-galactosidase activity in early whole mouse embryos and the subsequent method for paraffin sectioning and counterstaining. Additionally, a procedure for clarifying whole embryos is provided to better visualize X-gal staining in deeper regions of the embryo. Consistent results are obtained by performing this procedure, although optimization of reaction conditions is needed to minimize background activity. Limitations in the assay should be also considered, particularly regarding the size of the embryo in whole mount staining. Our protocol provides a sensitive and a reliable method for β-galactosidase detection during the mouse development that can be further applied to the cryostat sections as well as whole organs. Thus, the dynamic gene expression patterns throughout development can be easily analyzed by using this protocol in whole embryos, but also detailed expression at the cellular level can be assessed after paraffin sectioning.

Wprowadzenie

In order to describe specific gene expression patterns, the use of reporter genes as markers has been paramount from Drosophila to mammals. In experiments involving transgenic and knockout animals, the bacterial β-galactosidase gene (LacZ) of Escherichia coli (E. coli) is one of the most widely used1,2,3,4. β-galactosidase (β-gal) catalyzes the hydrolysis of β-galactosides (such as lactose) into its monosaccharides (glucose and galactose)5. Its most commonly used substrate is X-gal (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside), a glycoside that is hydrolyzed by β-galactosidase giving rise to 5-bromo-4-chloro-3-hydroxyindole and galactose. The first is oxidized into a dimer that, when used combined with potassium ferri-and ferro-cyanide, produces a characteristic insoluble, blue color precipitate (Figure 1)6.

The LacZ gene started to be used as a reporter gene over thirty years ago7,8. Usually, LacZ is inserted downstream of an endogenous promoter in the place of the open reading frame, so it can be used in bacterial and cell culture to visualize cells containing a particular insert, as well as in transgenic animals as a tracer of endogenous gene expression patterns during development9. In this regard, the visualization of β-galactosidase activity has been extensively used in Drosophila to understand the developmental and cellular processes from single cells to whole tissues. Drosophila genetics favor the generation of stable lines in which a modified P-element construct containing the reporter gene LacZ is inserted at random locations in the genome. Thus, when placed under the influence of enhancer elements it may drive its expression in a tissue specific manner, which has allowed the systematic analysis of the expression patterns of many genes during the past two decades10. In addition, the use of transgenic mice to monitor LacZ gene expression also allows detection of gene recombination events by Cre-loxP mediated recombination, and localization of the mutant embryonic stem cell derivatives in chimeric analyses11, which facilitates the control of LacZ expression in specific tissues as well as temporally. Also, in whole embryos, detection of the β-galactosidase activity may produce differential staining patterns at different intensities that can be conveniently observed across different developmental stages to analyze temporal changes in gene expression8,12.

In this article, we present a protocol to visualize gene expression through X-gal staining in the whole mount tissue at early developmental stages of mouse embryos. We present this histochemical method as a highly sensitive and inexpensive technique that favors accurate detection of the labeled cells either in whole mount specimens or at the cellular level after paraffin embedded tissues or embryos. The method allows for the direct visualization of staining in the mouse tissue with the minimum background when compared with other methods13.

Protokół

All experimental procedures were approved by the Committee on the Ethics of Animal Experiments of the CNIC (Centro Nacional de Investigaciones Cardiovasculares) and the Comunidad Autónoma de Madrid to ensure minimal animal suffering.

1. Collection of Embryos from Pregnant Mice (from E8.5 to E12.5)

  1. Sacrifice pregnant mice by either cervical dislocation or CO2 inhalation. The day of the first observed vaginal plug was considered embryonic day 0.5 (E0.5).
  2. Lay the animal in the supine position on the absorbent pad and clean the abdominal skin of the mouse with 70% ethanol.
    NOTE: Sterility is not required in the following steps.
  3. Pinch and lift the abdominal skin using mouse-tooth forceps.
  4. Make an incision through the skin and the abdominal wall, 2 to 4 cm vertically across the midline of the abdomen using surgical scissors.
  5. Expose the abdomen and remove the uterine horns from the mother with forceps cutting blood vessels along the inner curvature of the uterus with surgical scissors.
  6. Remove the string of embryos and transfer it to a Petri dish on ice containing 10 mL ice-cold 0.01 M phosphate buffer saline pH 7.4 (PBS).
  7. Carefully dissect the embryos out from the uterus under a stereomicroscope in a Petri dish with 10 mL fresh ice-cold PBS. Grasp the muscle wall with watchmakers' forceps to expose the amniotic sac, and then tear the amniotic membrane to remove the enclosed embryo and the yolk sac using the tips of the forceps.
  8. Collect the littermate embryos from pregnant mice at early stages (from E8.5 to E12.5) (Figure 2).
  9. Transfer the embryos to a fresh dish with 10 mL cold 1x PBS using curved forceps or, for very small embryos (E8.5-E9.5), use plastic transfer pipettes to collect the samples without embryo damage.
  10. Before starting the fixation, take an embryonic sample in a microcentrifuge tube for genotyping by cutting a small piece of the embryo or taking the amniotic membrane in the smallest embryos (from E8.5 to E9.5) with watchmakers' forceps.
    NOTE: LacZ genotyping is determined by polymerase chain reaction (PCR) primers: forward, 5´-ATCGTGCGGTGGTTGAACTG-3´; reverse, 5´-CGAGGCGTTAACCGTCAGCA -3´.

2. Fixation of Mouse Embryos

  1. Transfer each embryo into a 2 mL microcentrifuge tube with a rounded base containing 1 mL 1x PBS.
    NOTE: Perform all steps in the protocol in these tubes with agitation using a rolling shaker.
  2. Wash the embryos in 1x PBS for 1 min at room temperature to eliminate the remaining blood. Use plastic transfer pipettes to change liquids in the tubes.
  3. Fix the embryo in 1 mL of 0.125% glutaraldehyde on ice.
    NOTE: The time of fixation depends on the size of the embryo: 20 min for E8.5-E9.5 embryos, 30 min for E10.5 embryos and 1 h for E12.5 embryos.
  4. Remove the fixative and wash the embryos in 1x PBS twice for 10 min at room temperature before processing the sample for X-gal staining.

3. Whole Mount β-galactosidase Histochemistry of Mouse Embryos

  1. Prepare X-Gal Rinse buffer and X-Gal Staining Solution before starting the procedure (see Table 1 and Table of Materials). Use a wild-type (WT) littermate embryos as negative controls for the enzymatic reaction.
  2. Incubate the embryos in X-Gal Rinse buffer for 10 min at room temperature (Figure 2).
  3. Incubate the embryos in X-Gal Staining Solution from 2 h to overnight at 37 °C protected from light. Monitor the color reaction periodically via a dissecting microscope until sufficient intensity of blue staining is observed without the background in the embryo. Keep the pH of the solution between 8 and 9 to reduce background during the whole staining. If the staining solution begins to turn light, replace it with fresh substrate solution to extend the enzymatic reaction.
  4. Stop the reaction when the desired signal is obtained by washing embryos in a microcentrifuge tube with 1 mL 1x PBS twice for 10 min each at room temperature.
  5. Transfer stained embryos to 1 mL 4% paraformaldehyde (PFA) to re-fix them, for 1 h to overnight at 4 °C.
    NOTE: Embryos can be stored in 4% PFA/PBS for longer times at 4 °C or can be immediately processed for sectioning. This final fixation step is crucial for the long-term conservation of the staining pattern.
  6. Wash the embryos in 1 mL 1x PBS twice for 10 min at room temperature.
  7. Option 1: Clear embryos by immersion in a series of solutions with increasing concentrations of glycerol (20%, 40%, 60% and 80% glycerol in 1x PBS) for 1 h at room temperature in each solution.
    NOTE: Wash embryos in 80% glycerol for longer times, even days, until they are cleared, and then store them in 80% glycerol at 4 °C at this step (Figure 2). Adding a very small amount of sodium azide ora crystal of thymol to the embryos stored at 4 °C either in glycerol or 1x PBS is recommended to prevent mold growth. After clearing, whole mount embryos can be used for photographing (step 4).
  8. Option 2: Process embryos for paraffin embedding and sectioning using a microtome (Figure 2). Document the expression pattern in whole stained embryos before sectioning (steps 4 and 5).

4. Photography of Whole Mount Embryos

  1. To photograph whole mount stained embryos prior to sectioning, transfer them to a Petri dish prepared with a base of solidified 1-2% agarose in 1x PBS.
  2. Cover the embryo completely with 10 mL 1x PBS in the agarose-coated dishes to prevent dehydration and reflection while photographing through the liquid.
  3. Orientate the embryo immersed in 1x PBS using forceps. For older embryos (E10.5-E12.5), make a small hole in the agarose with forceps to place and position the specimen within it at different angles and to avoid the free-floating during photography.
  4. Place the dish on the stereomicroscope stage, using the transmitted (under-stage) light. Change between the 'dark-field' and 'bright-field' adjustments to set the desired illumination during photography and to optimize the translucency of the sample.
    NOTE: Use fiber optic illumination for later-stage embryos to avoid reflection at the surface of the embryo. When photographing cleared embryos, follow the same procedure but transfer them to a Petri dish containing 100% glycerol and fully immerse them.

5. Paraffin Embedding and Sectioning of X-gal Stained Embryos

  1. Paraffin wax embedding
    1. Remove the X-gal stained embryos from 4 °C (step 3.5) and wash them with 1 mL 1x PBS three times to eliminate the excess of fixative.
    2. Transfer each embryo to a histology cassette using forceps.
    3. Place the cassettes containing the embryos in a beaker and then dehydrate by passing them through a graded ethanol series at room temperature: 70% ethanol, once for 30 min; 96% ethanol, twice for 30 min each; 100% ethanol, twice for 30 min each.
      NOTE: Embryos can be stored in 70% ethanol for an undetermined time at 4 °C until starting the dehydration process.
    4. Incubate the whole cassette in isopropanol for 30 min at room temperature.
    5. By using forceps, transfer the cassettes to a glass staining trough containing pre-warmed isopropanol and leave in an oven at 60 °C for 30 min.
    6. Place the cassettes in a new glass staining trough containing a mixture of 50% isopropanol/ 50% melted paraffin wax and leave for 4 h in a 60 °C oven.
    7. Incubate the cassettes with the embryos with two changes of molten paraffin wax, 30 min at 60 °C each.
    8. At the end of the final paraffin wash, open the cassette and transfer each embryo to a separate tissue embedding mold to view the sample under a stereomicroscope.
    9. Fill the well with molten paraffin wax at 60 °C. Use heated forceps to keep the wax molten and carefully orientate the embryo in the mold.
      NOTE: The proper orientation of the sample is a critical step for sectioning the embryo in the desired plane.
    10. Before paraffin solidifies in the mold, place a cassette without the lid on the top of the block and fill it with molten paraffin wax. Let the remaining wax cool until solidified overnight at room temperature.
    11. Once the paraffin is completely solidified, remove the solid block from the mold and store the paraffin blocks either at room temperature or at 4 °C until sectioning14.
  2. Paraffin Sectioning
    1. Orient the blade on the microtome and set up 5-7 µm of thickness. 5.2.2. Cool the paraffin block on the ice and trim it to produce a cube or a pyramid.
    2. Attach the block to the microtome holder by using a small amount of molten wax.
    3. Orient the block for optimal cutting. Section the paraffin blocks into 5-7 µm thick slices at room temperature using standard microtome.
    4. Using a fine paintbrush, place the sections in a water bath at room temperature for manipulating and selecting slices.
    5. Pick up sections from the water bath with a microscope slide and transfer them into a water bath at 42 °C for stretching.
    6. Remove sections from the water bath and gently place them onto adhesion microscope slides.
    7. Dry the slides well in an oven at 37 °C overnight to allow the sections to completely adhere, otherwise, they may get lost during the staining.
      NOTE: Store the slides at 4 °C until starting staining procedures.
  3. Deparaffinization and Counterstaining of X-Gal-stained Paraffin Sections
    1. Put the slides on a microscope-slide tray in an oven at 60 °C for at least 45 min to make the paraffin wax more fluid.
    2. Transfer the slides onto a rack and use glass staining dishes to perform the following steps: submerge the rack in the staining jars containing alcohols of decreasing concentrations for complete paraffin removal and hydration of the tissues: isopropanol for 5 min at 60 °C; isopropanol for 3 min; 100% ethanol for 2 min; 96% ethanol for 1 min; 70% ethanol for 1 min at room temperature.
    3. Rinse sections in distilled water twice to make sure that there are no alcohol residues.
    4. Counterstain sections with a stain (e.g. Nuclear-Fast Red solution) for 5 min (usually between 3-8 min) at room temperature (Figure 2).
      NOTE: This staining helps to reveal overall tissue structure in the sections.
    5. After staining, wash the slides in distilled water for 1 min and check section staining in the microscope.
      NOTE: If the desired staining is too weak, counterstain sections again for a longer time.
    6. Dehydrate sections in the following series with increasing concentrations of ethanol: two washes in 95% ethanol for 2 min each, two washes in 100% ethanol for 2 min each, and, to avoid dissolving the blue color precipitates, just one quick wash in xylene.
    7. Remove the slides from the rack one by one and place them on a piece of paper. Then mount and coverslip each slide using a synthetic, permanent mounting medium.
      NOTE: Xylene is a flammable product whose vapors are irritating and harmful to human health and to aquatic organisms. It needs to be manipulated within a hood and requires the use of proper protective equipment.

Wyniki

Here we show the results from applying the standard protocol for the β-galactosidase histochemical reaction using X-gal as the substrate in whole mouse embryos (Figure 1 and Figure 2). By using this protocol, we examine Membrane type 4-matrix metalloproteinase (Mt4-mmp) expression at different embryonic developmental stages (E9.5, E11.5, and E12.5) using Mt4-mmp mutant mice that express the LacZ reporter under the control of...

Dyskusje

The E. coli LacZ gene has been widely used as a reporter in studies of gene expression patterns because of its high sensitivity and ease of detection. The present protocol describes a classic method for detecting β-gal expression based on an enzymatic reaction that is easy and quick to perform as well as inexpensive. This method can be also applied without major modifications in whole mount embryos, intact organs, cryostat tissue sections or cultured cells.

Accurate application o...

Ujawnienia

The authors declare that they have no competing financial interest.

Podziękowania

We would like to thank the Histopathological Service for their technical assistance at the Centro Nacional de Investigaciones Cardiovasculares (CNIC). We also thank Dr. Motoharu Seiki for kindly providing Mt4-mmpLacZ mice, and Dr. Alicia G. Arroyo for supporting our project and for her critical reading of the manuscript. We wish to thank Peter Bonney for proofreading this article. This work was supported by Universidad Europea de Madrid by means of a grant (# 2017UEM01) awarded to C.S.C.

Materiały

NameCompanyCatalog NumberComments
REAGENTS
2-PropanolSIGMA-ALDRICH24137-1L-R
AgaroseSCHARLAU50004/ LE3Q2014
Aqueous mounting mediumVECTOR LABSH-5501
Synthetic mounting mediaMERCK100579
96% EthanolPROLABO20824365
99.9% Ethanol absoluteSCHARLAUET00021000
50% Glutaraldehyde solutionSIGMA-ALDRICHG6403-100ml
85% GlycerolMERCK104094
99.9% GlycerolSIGMA-ALDRICHG5516
Magnesium chloride hexahydrateSIGMA-ALDRICH63064
Nonionic surfactant (Nonidet P-40)SIGMA-ALDRICH542334
Nuclear Fast Red counterstainSIGMA-ALDRICHN3020
Paraffin pastillesMERCK111609
ParaformaldehydeSIGMA-ALDRICH158127-500g
Phosphate buffered saline (tablets)SIGMA-ALDRICHP4417-50TAB
Potassium ferrocyanateMERCK1049840500
Potassium ferrocyanideMERCK1049731000
Sodium azideSIGMA-ALDRICHS8032
Sodium deoxycholateSIGMA-ALDRICH30970
Sodium dihydrogen phosphate monohydrateSIGMA-ALDRICH106346
Sodium phosphate dibasic dihydrateSIGMA-ALDRICH71638
ThymolSIGMA-ALDRICHT0501
Tris hydrochloride (Tris HCl)SIGMA-ALDRICH10812846001 (Roche)
X-GALVENN NOVAR-0004-1000
XyleneVWR CHEMICALSVWRC28973.363
EQUIPMENT
Disposable plastic cryomolds 15x15x5 mmSAKURA4566
Rotatory MicrotomeLeicaRM2235
CassettesOxford TradeOT-10-9046
Microscope Cover Glasses 24x60 mmVWRECN631-1575
Microscope slidesThermo Scientific, MENZEL-GLÄSERAGAA000001#12E
Adhesion microscope slidesThermo Scientific, MENZEL-GLÄSERJ1820AMNZ
Flotation Water bathLeicaHI1210
Disposable Low Profile Microtome BladesFeatherUDM-R35
Paraffin ovenJ.R. SELECTA2000205
Wax Paraffin dispenserJ.R. SELECTA4000490
StereomicroscopeLeicaDM500
Polypropylene microcentrifuge tubes 2.0 mLSIGMA-ALDRICHT2795
Polypropylene microcentrifuge tubes 1.5 mLSIGMA-ALDRICHT9661
Orbital shakerIKA LabortechnikHS250 BASIC
Stirring Hot PlateBibbyHB502
Vortex ShakerIKA LabortechnikMS1
Laboratory scaleGRAMFH-2000
Precision scaleSartoriusISO9001
pHmeterCrisonBasic 20
Optic fiberOptechPL2000

Odniesienia

  1. Shuman, H. A., Silhavy, T. J., Beckwith, J. R. Labeling of proteins with beta-galactosidase by gene fusion. Identification of a cytoplasmic membrane component of the Escherichia coli maltose transport system. The Journal of Biological Chemistry. 255, 168-174 (1980).
  2. Cui, C., Wani, M. A., Wight, D., Kopchick, J., Stambrook, P. J. Reporter genes in transgenic mice. Transgenic Research. 3, 182 (1994).
  3. Takahashi, E., et al. Expression analysis of Escherichia coli lacZ reporter gene in transgenic mice. Brain Research. Brain Research Protocols. 5 (2), 159-166 (2000).
  4. Burn, S. F. Detection of β-Galactosidase Activity: X-gal Staining. Methods Mol Biol. 886, 241-250 (2012).
  5. Jacob, F., Monod, J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 3, 318-356 (1961).
  6. Pearson, B., Wolf, P. L., Vazquez, J. A comparative study of a series of new indolyl compounds to localize beta-galactosidase in tissues. Laboratory Investigation; a Journal of Technical Methods and Pathology. 12, 1249-1259 (1963).
  7. Kothary, R., et al. A transgene containing lacZ inserted into the dystonia locus is expressed in neural tube. Nature. 335 (6189), 435-437 (1988).
  8. Kothary, R., et al. Inducible expression of an hsp68-lacZ hybrid gene in transgenic mice. Development. 105 (4), 707-714 (1989).
  9. Blanco, M. J., et al. Developmental expression of membrane type 4-matrix metalloproteinase (Mt4-mmp/Mmp17) in the mouse embryo. PLOS ONE. 12 (9), e0184767 (2017).
  10. Hartenstein, V., Jan, Y. N. Studying Drosophila embryogenesis with P-lacZ enhancer trap lines. Roux's Archives of Developmental Biology. 201 (4), 194-220 (1992).
  11. Gierut, J. J., Jacks, T. E., Haigis, K. M. Whole-mount X-Gal staining of mouse tissues. Cold Spring Harb Protoc. 1 (4), 417-419 (2014).
  12. Cooper, M. A., Zhou, R. β-Galactosidase Staining of LacZ Fusion Proteins in Whole Tissue Preparations. Methods Mol Biol. 1018, 189-197 (2013).
  13. Sundararajan, S., Wakamiya, M., Behringer, R. R., Rivera-Pérez, J. A. A fast and sensitive alternative for β-galactosidase detection in mouse embryos. Development. 139 (23), 4484-4490 (2012).
  14. Wei, Q., Manley, N. R., Condie, B. G. Whole mount in situ hybridization of E8.5 to E11.5 mouse embryos. Journal of Visualized Experiments. 56, 2797 (2011).
  15. Rikimaru, A., et al. Establishment of an MT4-MMP-deficient mouse strain representing an efficient tracking system for MT4-MMP/MMP-17 expression in vivo using beta-galactosidase. Genes Cells. 12 (9), 1091-1100 (2007).
  16. Leight, J. L., Alge, D. L., Maier, A. J., Anseth, K. S. Direct measurement of matrix metalloproteinase activity in 3D cellular microenvironments using a fluorogenic peptide substrate. Biomaterials. 34 (30), 7344-7352 (2013).
  17. Ma, W., Rogers, K., Zbar, B., Schmidt, L. Effects of different fixatives on β-galactosidase activity. Journal of Histochemistry & Cytochemistry. 50 (10), 1421-1424 (2002).
  18. Lojda, Z. Indigogenic methods for glycosidases. II. An improved method for beta-D-galactosidase and its application to localization studies of the enzymes in the intestine and in other tissues. Histochemie. 23 (3), 266-288 (1970).
  19. Trifonov, S., Yamashita, Y., Kase, M., Maruyama, M., Sugimoto, T. Overview and assessment of the histochemical methods and reagents for the detection of β-galactosidase activity in transgenic animals. Anat Sci Int. 91, 56-67 (2016).
  20. Sanchez-Ramos, J., et al. The X-gal Caution in Neural Transplantation Studies. Cell Transplantation. 9 (5), 657-667 (2000).
  21. Weiss, D. J., Liggitt, D., Clark, J. G. In situ histochemical detection of beta-galactosidase activity in lung: assessment of X-Gal reagent in distinguishing lacZ gene expression and endogenous beta-galactosidase activity. Hum Gene Ther. 8 (13), 1545-1554 (1997).
  22. Merkwitz, C., Blaschuk, O., Schulz, A., Ricken, A. M. Comments on Methods to Suppress Endogenous β-Galactosidase Activity in Mouse Tissues Expressing the LacZ Reporter Gene. The Journal of Histochemistry and Cytochemistry. 64 (10), 579-586 (2016).
  23. Buesa, R. J., Peshkov, M. V. Histology without xylene. Annals of Diagnostic Pathology. 13, 246-256 (2009).
  24. Richardson, D. S., Lichtman, J. W. Clarifying Tissue Clearing. Cell. 162 (2), 246-257 (2015).
  25. Kandyala, R., Raghavendra, S. P. C., Rajasekharan, S. T. Xylene: An overview of its health hazards and preventive measures. Journal of Oral and Maxillofacial Pathology. 14 (1), 1-5 (2010).
  26. Hinds, H. L. A Comparison of Three Xylene Substitutes. Laboratory Medicine. 17 (12), 752-755 (1986).
  27. Merkwitz, C., Blaschuk, O., Winkler, J., Schulz, A., Prömel, S., Ricken, A. M. Advantages and Limitations of Salmon-Gal/Tetrazolium Salt Histochemistry for the Detection of LacZ Reporter Gene Activity in Murine Epithelial Tissue. Journal of Histochemistry & Cytochemistry. 65 (4), 197-206 (2017).
  28. Levitsky, K. L., Toledo-Aral, J. J., López-Barneo, J., Villadiego, J. Direct confocal acquisition of fluorescence from X-gal staining on thick tissue sections. Scientific Reports. 3, 2937 (2013).
  29. Shen, X., Bao, W., Yu, W., Liang, R., Nguyen, B., Yu Liu, Y. An improved method with high sensitivity and low background in detecting low β-galactosidase expression in mouse embryos. PLoS One. 12 (5), (2017).
  30. Komatsu, Y., Kishigami, S., Mishina, Y. In situ Hybridization Methods for Mouse Whole Mounts and Tissue Sections with and Without Additional β-Galactosidase. Methods Mol Biol. 1092, 1-15 (2014).
  31. Jeong, Y., Epstein, D. J. Distinct regulators of Shh transcription in the floor plate and notochord indicate separate origins for these tissues in the mouse node. Development. 130 (16), 3891-3902 (2003).
  32. Eid, R., Koseki, H., Schughart, K. Analysis of LacZ reporter genes in transgenic embryos suggests the presence of several cis-acting regulatory elements in the murine Hoxb-6 gene. Developmental Dynamics. 196 (3), 205-216 (1993).
  33. Will, A. J., et al. Composition and dosage of a multipartite enhancer cluster control developmental expression of Ihh (Indian hedgehog). Nature Genetics. 49 (10), 1539-1545 (2017).
  34. Stanford, W. L., Cohn, J. B., Cordes, S. P. Gene-trap mutagenesis: past, present and beyond. Nature Reviews Genetics. 2 (10), 756-768 (2001).
  35. Ménoret, S., et al. lacZ transgenic rats tolerant for beta-galactosidase: recipients for gene transfer studies using lacZ as a reporter gene. Human Gene Therapy. 13 (11), 1383-1390 (2002).
  36. Takahashi, M., et al. Establishment of lacZ-transgenic rats: a tool for regenerative research in myocardium. Biochemical and Biophysical Research Communications. 305 (4), 904-908 (2003).
  37. Mozdziak, P. E., Borwornpinyo, S., McCoy, D. W., Petitte, J. N. Development of transgenic chickens expressing bacterial betagalactosidase. Developmental Dynamics. 226 (3), 439-445 (2003).
  38. Mozdziak, P. E., Wu, Q., Bradford, J. M., Pardue, S. L., Borwornpinyo, S., Giamario, C., Petitte, J. N. Identification of the lacZ insertion site and beta-galactosidase expression in transgenic chickens. Cell Tissue Research. 324 (1), 41-53 (2006).
  39. Hartley, K. O., Nutt, S. L., Amaya, E. Targeted gene expression in transgenic Xenopus using the binary Gal4-UAS system. Proceedings of the National Academy of Science U.S.A. 99, 1377-1382 (2002).
  40. Scheer, N., Campos-Ortega, J. A. Use of the Gal4-UAS technique for targeted gene expression in the zebrafish. Mechanisms of Development. 80 (2), 153-158 (1999).
  41. Brand, A. H., Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 118 (2), 401-415 (1993).
  42. Lee, B. Y., et al. Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell. 5 (2), 187-195 (2006).
  43. Morais, K. S., Guimarães, A. F. R., Ramos, D. A. R., Silva, F. P., de Oliveira, D. M. Long-term exposure to MST-312 leads to telomerase reverse transcriptase overexpression in MCF-7 breast cancer cells. Anti-Cancer Drugs. 28 (7), 750-756 (2017).
  44. Dimri, G. P., et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proceedings of the National Academy of Science U.S.A. 92 (20), 9363-9367 (1995).

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

galactosidaseGene ExpressionWhole MountX gal StainingMouse EmbryosDevelopmental BiologyReporter GeneLineage TracingHistochemical DetectionParaffin Sectioning

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone