Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
* Wspomniani autorzy wnieśli do projektu równy wkład.
A quantitative method has been developed to identify and predict the acute toxicity of chemicals by automatically analyzing the phenotypic profiling of Caenorhabditis elegans. This protocol describes how to treat worms with chemicals in a 384-well plate, capture videos, and quantify toxicological related phenotypes.
Applying toxicity testing of chemicals in higher order organisms, such as mice or rats, is time-consuming and expensive, due to their long lifespan and maintenance issues. On the contrary, the nematode Caenorhabditis elegans (C. elegans) has advantages to make it an ideal choice for toxicity testing: a short lifespan, easy cultivation, and efficient reproduction. Here, we describe a protocol for the automatic phenotypic profiling of C. elegans in a 384-well plate. The nematode worms are cultured in a 384-well plate with liquid medium and chemical treatment, and videos are taken of each well to quantify the chemical influence on 33 worm features. Experimental results demonstrate that the quantified phenotype features can classify and predict the acute toxicity for different chemical compounds and establish a priority list for further traditional chemical toxicity assessment tests in a rodent model.
Along with the rapid development of chemical compounds applied to industrial production and people's daily life, it is important to study the toxicity testing models for the chemicals. In many cases, the rodent animal model is employed to evaluate the potential toxicity of different chemicals on health. In general, the determination of lethal concentrations (i.e., the assayed 50% lethal dose [LD50] of different chemicals) is used as the traditional parameter in a rodent (rat/mouse) model in vivo, which is time-consuming and very expensive. In addition, due to the reduce, refine, or replace (3R) principle that is central to animal welfare and ethics, new methods that allow for the replacement of higher animals are valuable to scientific research1,2,3. C. elegans is a free-living nematode that has been isolated from soil. It has been widely used as a research organism in the laboratory because of its beneficial characteristics, such as a short lifespan, easy cultivation, and efficient reproduction. In addition, many fundamental biological pathways, including basic physiological processes and stress responses in C. elegans, are conserved in higher mammals4,5,6,7,8. In a couple of comparisons we and others have made, there is a good concordance between C. elegans toxicity and toxicity observed in rodents9. All of this makes C. elegans a good model to test the effects of chemical toxicities in vivo.
Recently, some studies quantified the phenotypic features of C. elegans. The features can be used to analyze the toxicities of chemicals2,3,10 and the aging of worms11. We also developed a method that combines a liquid worm culturing system and an image analysis system, in which the worms are cultured in a 384-well plate under different chemical treatments12. This quantitative technique has been developed to automatically analyze the 33 parameters of C. elegans after 12-24h of chemical treatment in a 384-well plate with liquid medium. An automated microscope stage is used for experimental video acquisition. The videos are processed by a custom-designed program, and 33 features related to the worms' moving behavior are quantified. The method is used to quantify the worm phenotypes under the treatment of 10 compounds. The results show that different toxicities can alter the phenotypes of C. elegans. These quantified phenotypes can be used to identify and predict the acute toxicity of different chemical compounds. The overall goal of this method is to facilitate the observation and phenotypic quantification of experiments with C. elegans in a liquid culture. This method is useful for the application of C. elegans in chemical toxicity evaluations and phenotype quantifications, which help predict the acute toxicity of different chemical compounds and establish a priority list for further traditional chemical toxicity assessment tests in a rodent model. In addition, this method can be applied to the toxicity screening and testing of new chemicals or the compound as the food additive agent pollution, pharmacautical compounds, environmental exogenous compound, and so on.
The protocol follows the animal care guidelines of the Animal Ethics Committee of the Beijing Center for Disease Prevention and Control in China.
1. Chemical preparation
2. Worm preparation
3. Chemical treatment and video capture
NOTE: In a 384-well plate, worms (50 µL in each well) are treated to six to seven dosages of an individual chemical (Table 1). Prepare eight parallel wells, each containing 50 µL of the 2x chemical solution for every dosage (eight wells are filled with the same chemical and the same concentration, Table 2). All videos are collected using a digital camera attached to an inverted microscope (Table of Materials). The chemical treatment experiment lasts for 24 h. Do not add bacterial food to each well during the 24 h chemical treatment experiment.
4. Experiment video processing
NOTE: A program for experimental video and images processing was written and packaged. It can be freely downloaded (see Table of Materials). The experimental video is stored in the form of an image frame sequence, and the frame sequence of each video is stored in a specific directory. The program can recognize worms and quantify phenotypes automatically.
We have tested the phenotypes of worms exposed to different concentrations of more than 10 chemicals12. In the test, 33 distinct features were quantified for each chemical compound at three time points (0 h, 12 h, and 24 h). Previously, a comparison between a manual and an automatic analysis of a lifespan assay was done11,12. In this assay, we found that chemicals and concentrations can influence the worm p...
The advantages of C. elegans have led to its increasing usage in toxicology9, both for mechanistic studies and high-throughput screening approaches. An increased role for C. elegans in complementing other model systems in toxicological research has been remarkable in recent years, especially for the rapid toxicity assessment of new chemicals. This article provides a new assay of high-throughput, quantitative screening of worm phenotypes in a 384-well plate for the automatic ident...
The authors have nothing to disclose.
The authors thank CGC for kindly sending the C. elegans. This work was supported by National Key Research and Development Program of China (#2018YFC1603102, #2018YFC1602705); National Natural Science Foundation of China Grant (#31401025, #81273108, #81641184), The Capital Health Research and Development of Special Project in Beijing (#2011-1013-03), the Opening Fund of the Beijing Key Laboratory of Environmental Toxicology (#2015HJDL03), and the Natural Science Foundation of Shandong Province, China (ZR2017BF041).
Name | Company | Catalog Number | Comments |
2-Propanol | Sigma-Aldrich | 59300 | |
384-well plates | Throme | 142761 | |
Agar | Bacto | 214010 | |
Atropine sulfate | Sigma-Aldrich | PHL80892 | |
Bleach buffer | 0.5 mL of 10 M NaOH, 0.5 mL of5% NaClO, 9 mL ofultrapure water | ||
Cadmium chloride | Sigma-Aldrich | 202908 | |
Calcium chloride | Sigma-Aldrich | 21074 | |
CCD camera | Zeiss | AxioCam HRm | Zeiss microscopy GmbH |
Cholesterol | Sigma-Aldrich | C8667 | |
Copper(II) sulfate | Sigma-Aldrich | 451657 | |
Ethanol | Sigma-Aldrich | 24105 | |
Ethylene glycol | Sigma-Aldrich | 324558 | |
Glycerol | Sigma-Aldrich | G5516 | |
K-Medium | 3.04 g of NaCl and 2.39 g of KCl in 1 L ultrapure water | ||
LB Broth | 10 g/L Tryptone, 5 g/L Yeast Extract, 5 g/L NaCl | ||
Magnesium sulfate heptahydrate | Sigma-Aldrich | 63140 | |
NGM Plate | 3 g ofNaCl, 17 g ofagar, 2.5 g ofpeptone in 1 L of ultrapure water, after autoclave add 1 mL of cholesterol (5 mg/mL in ethanol), 1 mL of MgSO4 (1 M), 1 mL of CaCl2 (1 M), 25 mL of PPB buffer | ||
Peptone | Bacto | 211677 | |
Potassium chloride | Sigma-Aldrich | 60130 | |
Potassium phosphate dibasic | Sigma-Aldrich | 795496 | |
Potassium phosphate monobasic | Sigma-Aldrich | 795488 | |
PPB buffer | 35.6 g of K2HPO4, 108.3 g of KH2PO4 in 1 L ultrapure water | ||
shaker | ZHICHENG | ZWY-200D | |
Sodium chloride | Sigma-Aldrich | 71382 | |
Sodium fluoride | Sigma-Aldrich | s7920 | |
Sodium hydroxide | Sigma-Aldrich | 71690 | |
Sodium hypochlorite solution | Sigma-Aldrich | 239305 | |
The link of program | https://github.com/weiyangc/ImageProcessForWellPlate | ||
Tryptone | Sigma-Aldrich | T7293 | |
Yeast extract | Sigma-Aldrich | Y1625 | |
Zeiss automatic microscope | Zeiss | AXIO Observer.Z1 | Zeiss automatic microsco with peproprietary software Zen2012 and charge coupled device(CCD) camera |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone