Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Here, we provide a method for analyzing the behavior of growing axons in 3D matrices, mimicking their natural development.
This protocol uses natural type I collagen to generate three-dimensional (3-D) hydrogel for monitoring and analyzing the axonal growth. The protocol is centered on culturing small pieces of embryonic or early postnatal rodent brains inside a 3-D hydrogel formed by the rat tail tendon-derived type I collagen with specific porosity. Tissue pieces are cultured inside the hydrogel and confronted to specific brain fragments or genetically-modified cell aggregates to produce and secrete molecules suitable for creating a gradient inside the porous matrix. The steps of this protocol are simple and reproducible but include critical steps to be considered carefully during its development. Moreover, the behavior of growing axons can be monitored and analyzed directly using a phase-contrast microscope or mono/multiphoton fluorescence microscope after fixation by immunocytochemical methods.
Neuronal axons, ending in axonal growth cones, migrate long distances through the extracellular matrix (ECM) of the embryo over specific pathways to reach their appropriate targets. The growth cone is the distal portion of the axon and it is specialized to sense the physical and molecular environment of the cell1,2. From a molecular point of view, growth cones are guided by at least four different molecular mechanisms: contact attraction, chemoattraction, contact repulsion, and chemorepulsion triggered by different axonal guidance cues3,4,5,6. Contact-mediated processes can be partially monitored in two-dimensional (2D) cultures on micro-patterned substrates (e.g., with stripes7,8 or spots9 containing the molecules). However, axons can navigate to their target in a non-diffusive manner by sensing several attractive and repulsive molecules from guidepost cells in the environment4,5,10. Here, we describe an easy method of 3-D culture to check whether a secreted molecule induces chemorepulsive or chemoattractive effects on developing axons.
The earliest studies aimed to determine the effects of axon guidance cues used explant cultures in three-dimensional (3-D) matrices to generate gradients simulating in vivo conditions11,12. This approach, together with in vivo experiments, allowed for the identification of four major families of guidance cues: Netrins, Slits, Semaphorins, and Ephrins4,5,6. These molecular cues and other factors13 are integrated by the growing axons, triggering the dynamics of adhesion complexes and transducing mechanical forces via the cytoskeleton14,15,16. To generate molecular gradients in 3-D cultures for axonal navigation, pioneering researchers used plasma clot substrates17, which was also used for organotypic slice preparations18. However, in 1958, a new protocol to generate 3-D collagen hydrogels was reported for studying with Maximow´s devices19, a culture platform, used in several studies suitable for microscopic observations20. Another pioneer study reported collagen gel as a tool to embed human fibroblasts for studying the differentiation of fibroblasts into myofibroblasts in wound healing processes21. In parallel, Lumsden and Davies applied collagen from the bovine dermis to analyze the putative effect of nerve growth factor (NGF) on the guiding of sensory nerve fibers22. With the development of new culture platforms (e.g., multi-well plates) by different companies and laboratories, collagen cultures were adapted to these new devices6,23,24,25,26. In parallel, an extract of ECM material derived from the Engelbreth-Holm-Swarm tumor cell line was made commercially available to expand these studies27.
Recently, several protocols have been developed to generate molecular gradients with putative roles in axon guidance using 3-D hydrogels (e.g., collagen, fibrin, etc.)28. Alternatively, the candidate molecule can be immobilized at different concentration in a porous matrix (e.g., NGF29) or generated by culturing in a small region of the 3-D hydrogel cell aggregates secreting the molecule to generate a radial gradient4,23,24,25,26. The last possibility will be explained in this protocol.
The procedure presented here is an easy, fast and highly reproducible method based on the analysis of axonal growth in 3-D hydrogel cultures of the embryonic mouse brain. In comparison with other methods, the protocol is well suited for non-trained researchers and can be fully developed after a short training (1-2 weeks). In this protocol, we first isolate collagen from adult rat tails to further generate 3-D matrices in which genetically-modified cell aggregates are cultured in front of the embryonic neuronal tissue. These cell aggregates form radial chemical gradients of a candidate molecule which elicits a response for the growing axons. Finally, the evaluation of the effects of the molecule on growing axons can easily be performed using a phase contrast microscopy or, alternatively, immunocytochemical methods.
Access restricted. Please log in or start a trial to view this content.
All animal experiments were performed under the guidelines and protocols of the Ethical Committee for Animal Experimentation (CEEA) of the University of Barcelona, and the protocol for the use of rodents in this study was reviewed and approved by the CEEA of the University of Barcelona (CEEA approval #276/16 and 141/15).
1. Purification of Rat Tail Collagen
2. Preparation of Cell (COS1) Aggregates Genetically-modified to Secrete a Candidate Molecule in 3-D Collagen Hydrogels
3. Generation of Embryonic Explant for Culture
4. Preparation of 3-D Co-cultures in Collagen Hydrogels
5. Fixation of Explant-cell Aggregate Co-cultures and Immunocytochemical Procedure
Access restricted. Please log in or start a trial to view this content.
Here, we present a widely accessible methodology to study axonal growth in 3-D hydrogel collagen cultures of embryonic mouse nervous system. To this end, we isolated collagen from adult rat tails to generate 3-D matrices in which we cultured genetically-modified cell aggregates expressing Netrin-1 or Sema3E confronted with embryonic neuronal tissue (e.g., CA region of the hippocampus). These cell aggregates formed a radially distributed gradient of the candidate molecule inside the collagen matrix. Finally, to evaluate t...
Access restricted. Please log in or start a trial to view this content.
The growth of developing axons is mainly invasive and includes ECM degradation and remodeling. Using the procedure presented here, researchers can obtain a homogenous 3-D matrix formed by the natural type I collagen in which axons (or cells) can respond to a chemical gradient secreted by genetically-modified cells as they do in vivo. Different axonal responses to gradients of attractive or inhibitory cues (protein, lipids, etc.) can be easily compared to specific control (mock transfected cells). As advantages, we must m...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
The authors thank Tom Yohannan for the editorial advice and M. Segura-Feliu for the technical assistance. This work was funded by the CERCA Programme and by the Commission for Universities and Research of the Department of Innovation, Universities, and Enterprise of the Generalitat de Catalunya (SGR2017-648). This work was funded by the Spanish Ministry of Research, Innovation and University (MEICO) through BFU2015-67777-R and and RTI2018-099773-B-100, the Spanish Prion Network (Prionet Spain AGL2017-90665-REDT), and the Institute Carlos III, CIBERNED (PRY-2018-2).
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Material | |||
3,3′-Diaminobenzidine tetrahydrochloride 10 mg tablets (DAB) | Sigma | D5905 | |
Adult Sprague-Dawley rats (8 to 9 weeks old) | Criffa-Credo, Lyon, France | ||
Avidin-biotin-peroxidase complex (ABC) | Vector Labs | PK-4000 | |
B27 serum-free supplement 50x | Invitrogen | 17504-044 | |
Bicinchoninic acid (BCA) protein assay kit | Pierce | 23225 | |
cDNA plasmid vectors | |||
COS1 cell lines | ATTC | CRL-1570 | |
D-(+)-Glucose | Sigma | 16325 | |
D-(+)-glucose (45% solution in water) for complete Neurobasal medium | Sigma | G8769 | |
D-MEM (Dulbecco's Modified Eagle Medium 1x ) for COS1 culture medium | Invitrogen | 41966-029 | |
Dulbecco’s phosphate buffered saline 10x (without Ca2+ and Mg2++) (D-PBS) for cultures | Invitrogen | 14200 | |
Ethanol | merck | 108543 | |
Ethylenediaminetetraacetic acid dihydrate disodium salt (EDTA) | Sigma | E5134 | |
Fluorescence mounting media (e.g., Fluoromount-G or similar) | Electron Microscopy Sciences (EMS) | 17984-25 | |
Gelatin powder | Sigma | G1890 | |
Glacial acetic acid (Panreac, cat. no. 211008) | Panreac | 211008 | |
Hank’s balanced salt solution | Invitrogen | 24020083 | |
Heat-inactivated foetal bovine serum | Invitrogen | 10108-165 | |
Heat-inactivated horse serum | Invitrogen | 26050-088 | |
Hydrogen peroxide (H2O2, 32 to 33% in water) | Sigma | 316989 | |
L-glutamine 200 mM solution (100x) for complete Neurobasal and COS1 medium | Invitrogen | 25030-024 | |
Lipofectamine 2000 Reagent | Invitrogen | 11668-019 | |
Mice pregnant female (embryonic day 12.5 to 16.5; E12.5-16.5) | Criffa-Credo, Lyon, France | ||
Modified Minimum Essential Medium Eagle (MEM) | Invitrogen | 11012-044 | |
Monoclonal antibody against class III β-tubulin (clone TUJ-1) | Biolegend | 801201 | |
N-2 supplement 100x | Invitrogen | 17502-048 | |
Neurobasal medium | Invitrogen | 21103049 | |
Paraformaldehyde | Merck | 1,040,051,000 | |
Penicillin/streptomycin solution 100x | Invitrogen | 15140-22 | |
Phosphate buffered saline 10x (PBS) for immunocytochemistry | Invitrogen | AM9624 | |
Secondary antibody: biotinylated horse anti-mouse | Vector Labs | BA-2000 | |
Serum-free medium (Opti-MEM) | Invitrogen | 11058-021 | |
Sodium azide | Panreac | 162712 | |
Sodium bicarbonate solution 7.5% | Invitrogen | 25080-094 | |
Sterile culture grade H2O | Sigma | W3500 | |
TritonTM X-100 | Sigma | X100 | |
Trizma base | Sigma | T1503 | |
Trypsin-EDTA (Trypsin (0.05% (wt/vol) with EDTA (1x) | Invitrogen | 25300-054 | |
Equipment | |||
1 large and 1 small curved scissors for dissection | Fine tools Instruments or similar | ||
1.5 mL conical centrifuge tubes | Eppendorf or similar | ||
15 mL conical centrifuge tubes | Corning or similar | ||
2 haemostats | Fine tools Instruments or similar | ||
2 small straight dissecting scissors | Fine tools Instruments or similar | ||
200 mL centrifuge tubes for centrifugation | Nalgene or similar | ||
200 mL sterile glass conical flasks | |||
2 L glass beaker | |||
4- and 6-well culture plates | Nunc | 176740 and 140675 | |
Automatic pipette pumps and disposable 10 mL and 25 mL filter-containing sterile plastic pipettes. | Gilson, Brand, Eppendorf or similar | ||
Automatic pipettes, sterile filter tips and current sterile tips | Gilson, Eppendorf or similar | ||
Bench top microcentrifuge with angle fixed rotor | Eppendorf, Beckman Coulter or similar | ||
Bench top refrigerated centrifuge with swing-bucket rotor (with 1.5, 15 and 50 mL tube adaptors) | Eppendorf, Beckman Coulter or similar | ||
Cell culture incubator at 37 °C, 5% CO2 and 95% air | |||
Dialysis tubing cellulose membrane | Sigma | D9402 | |
Dialysis tubing closures | Sigma | Z37101-7 | |
Disposable glass pipettes | |||
Dissecting microscope with dark field optics | Olympus SZ51 or similar | ||
High-speed refrigerated Beckman Coulter centrifuge or similar with angle fixed rotor | |||
Laminar flow hood | |||
Large 100 mm, 60 mm and small 35 mm Ø cell culture dishes | Nunc | 150679 , 150288 and 150318, respectively | |
Magnetic stirrer and magnetic spin bars | IKA or similar | ||
McIlwain tissue chopper | Mickle Laboratory Engineering | ||
One pair of fine straight forceps and one pair of curved forceps | Fine tools Instruments or similar | ||
Razor blades for the tissue chopper | |||
Scalpels (number 15 and 11) | |||
Two pairs of fine spatulas for transferring collagen and tissue pieces | Fine tools Instruments or similar |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone