Zaloguj się

Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

Here, we demonstrate how to set up an inexpensive volt-amperemeter with programmable output frequency that can be used with commercially available chopstick electrodes for transepithelial/endothelial electrical resistance measurements.

Streszczenie

Transepithelial/endothelial electrical resistance (TEER) has been used since the 1980s to determine confluency and permeability of in vitro barrier model systems. In most cases, chopstick electrodes are used to determine the electric impedance between the upper and lower compartment of a cell culture filter insert system containing cellular monolayers. The filter membrane allows the cells to adhere, polarize, and interact by building tight junctions. This technique has been described with a variety of different cell lines (e.g., cells of the blood-brain barrier, blood-cerebrospinal fluid barrier, or gastrointestinal and pulmonary tract). TEER measurement devices can be readily obtained from different laboratory equipment suppliers. However, there are more cost-effective and customizable solutions imaginable if an appropriate voltammeter is self-assembled. The overall aim of this publication is to set up a reliable device with programmable output frequency that can be used with commercially available chopstick electrodes for TEER measurement.

Wprowadzenie

Epithelial and endothelial cells function as cellular boundaries, separating the apical and basolateral sides of the body. If they are connected through tight junctions, passive substance diffusion through the paracellular spaces is restricted1, resulting in the formation of a selectively permeable barrier. Several artificial barrier systems have been developed2 using microvascular endothelial cells (HBMEC, blood-brain barrier3,4,5,6,7), choroid plexus epithelial cells (HIBCPP/PCPEC, blood-cerebrospinal fluid barrier8,9,10,11,12,13,14), colorectal adenocarcinoma cells (Caco-2, gastrointestinal models15), or airway/alveolar cell lines (pulmonary models16,17). These systems typically consist of cells grown in a monolayer on permeable membranes (i.e., filter insert systems) to allow access to the apical and basolateral sides. It is important that the integrity of the model system matches the in vivo conditions. Hence, several techniques have been developed to analyze barrier function by measuring paracellular diffusion of tracer compounds across the cell layer. These substances include radiolabeled sucrose, dye-labeled albumin, FITC-labeled inulin, or dye-labeled dextrans2. However, chemical dyes can make cells unusable for further experiments. To monitor barrier systems noninvasively, measurement of transepithelial/transendothelial electrical resistance (TEER) across a cellular monolayer can be used2,18,19. Because bipolar electrode systems are influenced by the electrode polarization impedance at the electrode-electrolyte interface, tetrapolar measurements are generally used to overcome this limitation20. The underlaying technique is a four-terminal sensing (4T) that was first described in 1861 by William Thomson (Lord Kelvin)21. In brief, the current is injected by a pair of current-carrying electrodes while a second pair of voltage-sensing electrodes is used to measure the voltage drop20. Nowadays, so-called chopstick electrodes consist of a pair of double electrodes, each containing a silver/silver-chloride pellet for measuring voltage and a silver electrode for passing current2. The electrical impedance is measured between the apical and the basolateral compartment with the cell layer in between (Figure 1). A square wave signal at a frequency of typically 12.5 Hz is applied at the outer electrodes and the resulting alternating current (AC) measured. Additionally, the potential drop across the cell layer is measured by the second (inner) electrode pair. Electrical impedance is then calculated according to Ohm's law. TEER values are normalized by multiplying impedance and cell layer surface area and are typically expressed as Ω cm2.

There are systems in which cells and electrodes are arranged in a more sophisticated way, but are also based on the 4T measuring principle and can be used with the same measurement devices. EndOhm systems, for example, in which the filter is inserted, contain a chamber and cap with a pair of concentric electrodes with the same structure as the chopstick electrode. The shape of the electrodes allows for a more uniform current density flow across the membrane, thereby reducing variation between readings. Even more complex (but also more accurate) is an Ussing chamber, where a cell layer separates two chambers filled with Ringer's solution22. The chamber itself can be gassed with oxygen, CO2, or N2, and stirred or supplemented with experimental substances. As ion transport across the cell layer occurs, a potential difference can be measured by two voltage-sensing electrodes near the tissue. This voltage is cancelled out by two current-carrying electrodes placed next to the cell layer. The measured current will then give the net ion transport and the transepithelial resistance, which reflects barrier integrity, can be determined22. TEER measurement can also be applied on body-on-a-chip systems that represent barrier-tissue models23,24. These systems mimic in vivo conditions of the cells and often consist of several types of cells, stacked on top of each other in layers.

The following protocol explains how to set up a cost-effective and reliable voltammeter with programmable output frequency that produces no statistically significant differences in TEER compared to commercially available measurement systems.

Protokół

1. Assembly of a basic volt-amperemeter for TEER measurement

  1. Prepare a standard USB charger as the 5 V D.C. power supply, a USB extension cord, a microcontroller that will be used as a programmable square wave generator, two standard multimeters that are able to measure alternating current and voltage as root mean square (True-RMS), four cables with banana plugs, a telephone extension cord with a RJ14 female connector including six pins with the inner four wired (6P4C), two short cables, a luster terminal, a 120 kΩ pre-resistor, wire end ferrules, and soldering lugs. The tools required are an insulation stripper, a crimping tool, and a soldering iron.
  2. First, connect the USB extension to the microcontroller board.
  3. Strip the end insulation of two short cables. Solder one side per cable either directly to pins 0 and 2 of the microcontroller or to soldering lugs, which in turn are clipped on the respective pins. Crimp the other ends to the wire end ferrules and connect them to a luster terminal as depicted in Figure 1.
  4. Link the banana plugs to the multimeters. Strip and crimp the other end of each of the four cables.
  5. Cut the telephone extension cord in two pieces and dismantle and crimp the conductors of the side containing the female connector. Check for the continuity of the conductors and pins.
  6. The first multimeter will be used to measure current in µA (note that the AC mode has to be set explicitly). Connect it in a series with a 120 kΩ pre-resistor to pins five and six of the RJ14 connector, corresponding to the outer electrode pair of the chopstick electrode.
  7. Finally, link the second multimeter, which will be used to measure the transepithelial voltage drop in mV, via the luster terminal to pins three and four of the RJ14 connector, corresponding to the inner electrode pair of the chopstick electrode.
  8. If desired, mount the installation in a chassis.

2. Programming the microcontroller

  1. Modify the provided source code (supplemental coding file 1) as needed. In the given form, pins 0 and 2 will alternate between ground and +5 V with 40 ms half-time of oscillation. Thus, a square wave signal with an amplitude of 5 V and a frequency of approximately 12.5 Hz will be generated. The real values may differ due to the inaccuracy of the microcontroller's time emitter.
  2. Connect the microcontroller to a desktop computer via a USB port and upload the source code with matching software25.

3. Recording of voltage oscillograms (optional)

  1. Bypass pins five and six of the RJ14 connector with a 1 kΩ test resistor and connect to an oscilloscope.
  2. Check for the frequency, peak voltage, and waveform. Digitize and export the data.
  3. If desired, record oscillograms from a reference device (EVOM) and the self-assembled voltammeter for comparison.
    NOTE: In this case, the data was recorded with a Digital Storage Scope HM 208. Being a very basic digital oscilloscope, the image could be internally digitized (frozen) but had to be plotted using an analogue PM 8143 X-Y recorder. The image was subsequently scanned.

4. Cell cultivation and TEER measurement

  1. Seed Human Choroid Plexus Papilloma (HIBCPP) cells on cell culture filter inserts with a pore size of 3 µm in DMEM/F12 (see Table of Materials) containing 10% fetal calf serum9. Grow the cells at 37 °C in a water saturated atmosphere containing 5% CO2 as described by Dinner et al.9.
  2. When the filters reach an impedance of 70 Ω ∙ cm2, change to serum-free DMEM/F12 and define the timepoint as Day 0.
  3. Connect the electrode to the RJ14 port of the self-assembled voltammeter and plug in the USB power supply. Set the multimeters to AC voltage mode (mV) and AC current mode (µA), respectively.
    1. Alternatively, connect the electrode to a commercially available reference device and turn on according to the manufacturer's instructions.
  4. Sterilize the electrode in 80% ethanol for 10 min and equilibrate in the appropriate medium for another 10 min.
  5. Put the electrode in both compartments of a cell culture filter insert system (the longer part of the electrode in the lower compartment and the shorter part in the upper compartment) containing a HIBCPP cell layer until the measurement values remain constant.
  6. For a reference device, note the impedance directly or calculate the impedance according to Ohm's law (R = U/I) for the self-assembled voltammeter. Be aware that electrode angle affects the measurements.
  7. Repeat the TEER measurement (steps 3−6) from Day 0 until Day 4.

Wyniki

To compare the operation of a self-assembled voltammeter with its commercially available counterpart, a voltage oscillogram of both devices was recorded.

As shown in Figure 2A, the reference instrument generated a square wave signal with an amplitude of 80 mV and an oscillation time of 80 ms, which corresponds to a frequency of 12.5 Hz, when operating on-load with a 1 kΩ test resistor.

...

Dyskusje

Before a self-made voltammeter can be used in a daily routine, it is essential to check the device for proper function. In our case, a half-time of oscillation of 40 ms (12.5 Hz) was programmed, but the effective oscillation time turned out to be 60 ms (16.7 Hz). This inaccuracy of the microcontroller's time emitter had no detectable impact on TEER measurements. It might be best to determine the actual frequency using the frequency setting of one of the multimeters. If any deviation is found, the source code can be a...

Ujawnienia

The authors have no competing financial interests or other conflicts of interest.

Podziękowania

The authors would like to thank Herman Liggesmeyer and Marvin Bende for their expert advice in electrotechnics and informatics.

Materiały

NameCompanyCatalog NumberComments
120 kOhm resistorGeneral (generic) equipment
Banana plug cablesGeneral (generic) equipment
CablesGeneral (generic) equipment
Chopstick electrodeMerck MillicellMERSSTX01
Chopstick electrode (alternative)WPI World Precision InstrumentsSTX2
Crimping toolGeneral tool
Digispark / ATtiny85AZ-Delivery Vertriebs GmbHDigispark Rev.3 Kickstarter
DMEM:F12Gibco (Thermo Fisher)31330038
Fetal calf serum (FCS)/Fetal Bovine Serum (FBS)Life Technologies10270106
Filter inserts 3µm translucentGreiner Bioone662631
HIBCPPHiroshi Ishikawa / Horst Schroten
Insulation stripperGeneral tool
Luster terminalGeneral (generic) equipment
OscilloscopeHAMEGDigital Storage Scope HM 208
PlotterPHILIPSPM 8143 X-Y recorder
Software Arduinohttps://www.arduino.ccArduino 1.8.9
Soldering ironGeneral tool
Soldering lugsGeneral (generic) equipment
Telephone cable with RJ14 (6P4C) connectorGeneral (generic) equipment
Test resistorMerck MillicellMERSSTX04
True-RMS multimetersVOLTCRAFTVC185
USB chargerGeneral (generic) equipment
USB extension cordGeneral (generic) equipment
Voltohmmeter for TEER measurementWPI World Precision InstrumentsEVOM
Voltohmmeter for TEER measurement (alternative)Merck MillicellERS
Wire end ferrulesGeneral (generic) equipment

Odniesienia

  1. Matter, K., Balda, M. S. Functional analysis of tight junctions. Methods. 30, 228-234 (2003).
  2. Srinivasan, B., et al. TEER measurement techniques for in vitro barrier model systems. Journal of Laboratory Automation. 20, 107-126 (2015).
  3. Daniels, B. P., et al. Immortalized human cerebral microvascular endothelial cells maintain the properties of primary cells in an in vitro model of immune migration across the blood brain barrier. Journal of Neuroscience Methods. 212, 173-179 (2013).
  4. Weksler, B. B., et al. Blood-brain barrier-specific properties of a human adult brain endothelial cell line. Federation of American Societies for Experimental Biology Journal. 19, 1872-1874 (2005).
  5. Lippmann, E. S., Al-Ahmad, A., Azarin, S. M., Palecek, S. P., Shusta, E. V. A retinoic acid-enhanced, multicellular human blood-brain barrier model derived from stem cell sources. Scientific Reports. 4, 4160 (2014).
  6. Stins, M. F., Badger, J., Sik Kim, K. Bacterial invasion and transcytosis in transfected human brain microvascular endothelial cells. Microbial Pathogenesis. 30, 19-28 (2001).
  7. Muruganandam, A., Herx, L. M., Monette, R., Durkin, J. P., Stanimirovic, D. B. Development of immortalized human cerebromicrovascular endothelial cell line as an in vitro model of the human blood-brain barrier. Federation of American Societies for Experimental Biology Journal. 11, 1187-1197 (1997).
  8. Ishiwata, I., et al. Establishment and characterization of a human malignant choroids plexus papilloma cell line (HIBCPP). Human Cell. 18, 67-72 (2005).
  9. Dinner, S., et al. A Choroid Plexus Epithelial Cell-based Model of the Human Blood-Cerebrospinal Fluid Barrier to Study Bacterial Infection from the Basolateral Side. Journal of Visualized Experiments. , (2016).
  10. Schwerk, C., et al. Polar invasion and translocation of Neisseria meningitidis and Streptococcus suis in a novel human model of the blood-cerebrospinal fluid barrier. PLoS One. 7, e30069 (2012).
  11. Tenenbaum, T., et al. Polar bacterial invasion and translocation of Streptococcus suis across the blood-cerebrospinal fluid barrier in vitro. Cellular Microbiology. 11, 323-336 (2009).
  12. Gath, U., Hakvoort, A., Wegener, J., Decker, S., Galla, H. J. Porcine choroid plexus cells in culture: expression of polarized phenotype, maintenance of barrier properties and apical secretion of CSF-components. European Journal of Cell Biology. 74, 68-78 (1997).
  13. Haselbach, M., Wegener, J., Decker, S., Engelbertz, C., Galla, H. J. Porcine Choroid plexus epithelial cells in culture: regulation of barrier properties and transport processes. Microscopy Research and Technique. 52, 137-152 (2001).
  14. Strazielle, N., Ghersi-Egea, J. F. Physiology of blood-brain interfaces in relation to brain disposition of small compounds and macromolecules. Molecular Pharmaceutics. 10, 1473-1491 (2013).
  15. Hilgendorf, C., et al. Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: permeabilities via diffusion, inside- and outside-directed carrier-mediated transport. Journal of Pharmaceutical Sciences. 89, 63-75 (2000).
  16. Mathia, N. R., et al. Permeability characteristics of calu-3 human bronchial epithelial cells: in vitro-in vivo correlation to predict lung absorption in rats. Journal of Drug Targeting. 10, 31-40 (2002).
  17. Fuchs, S., et al. Differentiation of human alveolar epithelial cells in primary culture: morphological characterization and synthesis of caveolin-1 and surfactant protein-C. Cell and Tissue Research. 311, 31-45 (2003).
  18. Furie, M. B., Cramer, E. B., Naprstek, B. L., Silverstein, S. C. Cultured endothelial cell monolayers that restrict the transendothelial passage of macromolecules and electrical current. The Journal of Cell Biology. 98, 1033-1041 (1984).
  19. Hidalgo, I. J., Raub, T. J., Borchardt, R. T. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology. 96, 736-749 (1989).
  20. Yeste, J., et al. Geometric correction factor for transepithelial electrical resistance measurements in Transwell and microfluidic cell cultures. Journal of Physics D Applied Physics. 49 (37), 3754 (2016).
  21. Northrup, E. VI: The Measurement of Low Resistance. Methods of Measuring Electrical Resistance. , 100-131 (1912).
  22. Li, H., Sheppard, D. N., Hug, M. J. Transepithelial electrical measurements with the Ussing chamber. Journal of Cystic Fibrosis. 3 (Suppl 2), 123-126 (2004).
  23. Griep, L. M., et al. BBB on chip: microfluidic platform to mechanically and biochemically modulate blood-brain barrier function. Biomedical Microdevices. 15, 145-150 (2013).
  24. Esch, M. B., et al. On chip porous polymer membranes for integration of gastrointestinal tract epithelium with microfluidic 'body-on-a-chip' devices. Biomedical Microdevices. 14, 895-906 (2012).
  25. . Arduino Web Editor Available from: https://www.arduino.cc/en/Main/Software (2019)
  26. Benson, K., Cramer, S., Galla, H. J. Impedance-based cell monitoring: barrier properties and beyond. Fluids and Barriers of the CNS. 10, 5 (2013).
  27. Hufnagl, M. . Time Resolved Transepithelial Impedance Spectroscopy Of Caco 2 Monolayers Relying on Lithographically Patterned Basolateral Electrode Cell Arrays. , (2010).
  28. Guimerà, A., Gabriel, G., Parramon, D., Calderón, E., Villa, R., Dössel, O., Schlegel, W. C. Portable 4 Wire Bioimpedance Meter with Bluetooth Link. World Congress on Medical Physics and Biomedical Engineering. International Federation of Medical and Biological Engineering Proceedings. 25/7, (2009).

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

TEER MeasurementsTransepithelial Electrical ImpedanceEpithelial MonolayersCell CultureFour terminal SensingVolt amperemeterProgrammable Output FrequencyChoroid Plexus Epithelial Papilloma CellsBlood cerebrospinal Fluid BarrierImpedance MeasurementLow budget Volt amperemeterUSB Power SupplyMicrocontrollerTrueRMS Multimeters

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone