Method Article
Here, we describe a protocol to create discrete and accurate inorganic nanostructures on substrates using DNA origami shapes as guiding templates. The method is demonstrated by creating plasmonic gold bowtie-shaped antennas on a transparent substrate (sapphire).
Structural DNA nanotechnology provides a viable route for building from the bottom-up using DNA as construction material. The most common DNA nanofabrication technique is called DNA origami, and it allows high-throughput synthesis of accurate and highly versatile structures with nanometer-level precision. Here, it is shown how the spatial information of DNA origami can be transferred to metallic nanostructures by combining the bottom-up DNA origami with the conventionally used top-down lithography approaches. This allows fabrication of billions of tiny nanostructures in one step onto selected substrates. The method is demonstrated using bowtie DNA origami to create metallic bowtie-shaped antenna structures on silicon nitride or sapphire substrates. The method relies on the selective growth of a silicon oxide layer on top of the origami deposition substrate, thus resulting in a patterning mask for following lithographic steps. These nanostructure-equipped surfaces can be further used as molecular sensors (e.g., surface-enhanced Raman spectroscopy (SERS)) and in various other optical applications at the visible wavelength range owing to the small feature sizes (sub-10 nm). The technique can be extended to other materials through methodological modifications; therefore, the resulting optically active surfaces may find use in development of metamaterials and metasurfaces.
Structural DNA nanotechnology has rapidly evolved during the recent decade1,2, and the most influential development in the field has arguably been the invention of DNA origami3,4. The DNA origami technique allows fabrication of virtually any nanoshape with accurate structural features3,4. This powerful method can be used in (sub)nanometer-precise spatial arrangement and anchoring of other nano-objects, such as carbon nanotubes5, metal nanoparticles6,7,8,9, enzymes/proteins10,11,12,13 and therapeutic materials14,15,16,17. Importantly, these structures are not merely static, but they can also be programmed to act in a dynamic manner18,19. The countless applications of DNA origami range from drug delivery20,21,22 to molecular electronics/plasmonics5,23,24,25 and from materials science26,27 to novel imaging and calibration techniques28.
Besides the applications mentioned above, the extreme spatial resolution of the DNA origami shapes could be harnessed in nanopatterning and delicate nanoscale lithography29,30. This protocol describes a lithography method for creating discrete and accurate inorganic nanostructures on substrates using DNA origami templates. These templates can be efficiently produced in various shapes and in large quantities31, and deposited effortlessly onto chosen substrates at large scales32. These properties allow a highly parallel fabrication of billions of nanostructures in one step as opposed to commonly used but rather slow electron beam lithography or other scanning-based nanofabrication techniques.
Herein, the fabrication process is demonstrated by creating gold bowtie-shaped structures on silicon nitride and sapphire substrates; in other words, the spatial information of DNA origami is transferred to entirely metallic nanostructures. As discussed here, the technique is not limited to the selected bowtie DNA origami structure since the method enables the use of virtually any DNA origami shape. Moreover, with methodical modifications, the technique can be extended to different metals and substrates paving the way towards fabrication of metasurfaces33.
The surfaces patterned with the DNA origami-mediated fabrication may serve as versatile sensors; for example, they can be used in surface-enhanced Raman spectroscopy (SERS). As a result of the small dimensions of the individual nanoshapes, the created surfaces may find uses in optical and plasmonic applications at the visible wavelength range.
1. Design of DNA origami
NOTE: In this protocol, a nanopatterning process is described using a two-dimensional (2D) bowtie DNA origami structure (Figure 1)34. To design a new DNA origami shape, follow the guidelines below:
2. Assembly of DNA origami
3. Purification of DNA origami
NOTE: The excess amount of staple strands can be removed from the DNA origami solution using a non-destructive poly(ethylene glycol) (PEG) purification method. The protocol is adapted from Stahl et al.45.
4. Agarose gel electrophoresis
NOTE: The quality of the folding and the removal of excess staple strands can be verified using agarose gel electrophoresis.
5. Substrate preparation (Figure 3A)
NOTE: The following steps are all performed inside a clean room, except for the SiO2 growth (Step 9). The cleaning steps can also be substituted with a standard piranha-solution based cleaning if this process is not enough to remove all residues from the substrate.
6. Plasma-enhanced chemical vapor deposition (PECVD) of the amorphous silicon (a-Si) layer (Figure 3B)
7. Oxygen plasma treatment of the a-Si layer (Figure 3B)
NOTE: This step will make the substrate surface slightly negatively charged and hydrophilic, so that the DNA origami structures can be later effectively adsorbed to the surface with the help of additional magnesium ions.
8. Deposition of DNA origami (Figure 3C)
9. Growth of the SiO2 mask (Figure 3D)
NOTE: This step can be performed outside the cleanroom. The following version will yield a negative-tone pattern, but it is possible to modify the process to yield a positive-tone pattern instead. The SiO2 growth process is adapted from Surwade et al.52, developed further by the authors53, and finally optimized for this protocol.
10. Reactive ion etching (RIE) of SiO2 and a-Si (Figure 3E)
11. Physical vapor deposition (PVD) of metals (Figure 3F)
12. Lift-off with hydrofluoric acid (HF) (Figure 3G)
13. RIE of remaining a-Si (Figure 3H)
14. Atomic force microscopy (AFM)
NOTE: Atomic force microscopy and scanning electron microscopy can be used to monitor the success of film growth and patterning as well as to image folded DNA origami structures (Figure 2B,C). The following sample preparation step can be skipped if processed samples from Steps 5-13 are imaged.
15. Scanning electron microscopy (SEM)
A schematic figure of the bowtie DNA origami design and its structural details are shown in Figure 1. Agarose gel electrophoresis and AFM are used to analyze the DNA origami folding and the quality of PEG purification (Figure 2). The process flow of the nanolithography steps is displayed in Figure 3. Representative AFM images after SiO2 mask growth are shown in Figure 4 (this step is depicted in Figure 3D), while SEM images of the final metal nanostructures can be seen in Figure 5 (this step is depicted in Figure 3H). Figure 6 demonstrates the optical functionality of the metallic nanostructures templated by the bowtie DNA origami.
Folding buffer (FOB) component concentrations [mM] | |||||
Tris | Acetic acid | EDTA | Magnesium chloride | pH | |
2.5x FOB | 100 | 47.5 | 2.5 | 31.25 | ~8,3 |
1x FOB | 40 | 19 | 1 | 12.5 | ~8,3 |
Table 1: Composition of the folding buffer (FOB).
Temperature range [oC] | Cooling rate |
90-70 | -0.2 °C / 8 s |
70-60 | -0.1 °C / 8 s |
60-27 | -0.1 °C / 2 s |
12 | Hold until stopped |
Table 2: Thermal ramp for the bowtie origami folding. After annealing, the origami will be stored at 12 oC until the program is manually stopped.
PECVD and RIE parameters | ||||||
Gas | Gas flow [sccm] | Chamber pressure [mTorr] | RF power [W] | Temperature [oC] | Duration [s] | |
PECVD of a-Si | 5% SiH4 in N2 | 500 | 1000 | 15 | 250 | 90 |
O2 plasma treatment | O2 | 50 | 40 | 200 | 30 | 1200 |
RIE of SiO2 | CHF3 | 25 | ||||
Ar | 25 | 30 | 100 | 25 | 10-22 | |
RIE of a-Si | O2 | 8 | ||||
SF6 | 100 | 90 | 50 | 30 | 35 | |
RIE of remaining a-Si | O2 | 8 | ||||
SF6 | 100 | 90 | 50 | 30 | 35-40 |
Table 3: Process parameters for plasma-enhanced chemical vapor deposition (PECVD) and reactive ion etching (RIE). The process parameters for these devices are specific to individual instruments and they may need to be adapted when used.
Figure 1: Design of the bowtie DNA origami. (A) Schematic representation of the bowtie origami design in which the core structure is shown as double helices and the polyT-overhangs are depicted as wavy lines. (B) Screenshot of a part of the bowtie origami design in the caDNAno software. The red crosses denote the base pair skipping for the twist correction, and the T8-overhangs are added to prevent blunt-end base-stacking. Please click here to view a larger version of this figure.
Figure 2: Characterization of the bowtie DNA origami structure. (A) Agarose gel electrophoresis of the bowtie structure before and after poly(ethylene glycol) (PEG) purification. The 7249 nucleotides long scaffold is used as reference. (B) Atomic force microscopy (AFM) image of the bowtie structures before the purification. (C) AFM image of the bowtie structures after PEG purification. Please click here to view a larger version of this figure.
Figure 3: Scheme of fabrication process flow (the dimensions are not in scale). (A) Dice and clean the substrate. (B) Deposit an a-Si layer by plasma-enhanced chemical vapor deposition (PECVD). *It is possible to employ an additional sacrificial layer under the a-Si to enable lift-off with etchant other than HF. (C) Treat the sample surface with O2 plasma and deposit DNA origami onto it. (D) Grow the SiO2 mask in desiccator. (E) Etch a thin layer of SiO2 and through the a-Si underneath it by reactive ion etching (RIE). (F) Deposit metal through the mask by physical vapor deposition (PVD). (G) Lift-off with HF. (H) remove the remaining a-Si by RIE. Please click here to view a larger version of this figure.
Figure 4: Representative AFM images of SiO2 film with the DNA origami shaped pattern. (A) 10 μm x 10 μm scanning area demonstrates the high yield of the pattern formation. (B) A closer 3 μm x 3 μm scan shows the accurate individual patterns in the SiO2 film. Please click here to view a larger version of this figure.
Figure 5: Representative scanning electron microscopy (SEM) images of metallic nanostructures templated with structurally different DNA origami. (A) Cross-shaped DNA origami, i.e., so-called Seeman tile origami54. (B) Bowtie antennas. (C) Chiral double-L (CDL) structures. Insets show individual structures with box sizes of 150 nm x 150 nm. The fabrication yield of exact structures is up to 76% for the bowtie origami and ~ 50% for the other structures displayed here34. This figure has been adapted and modified from Shen et al.34. The figure is reproduced with permission of the authors and published by The American Association for the Advancement of Science, 2018. Please click here to view a larger version of this figure.
Figure 6: Representative optical/functional properties of resulting nanostructures. (A) Localized surface plasmon resonance (LSPR) measurements of an individual gold bowtie structure with different polarization (color coded as orange and blue). The solid lines are measured spectra and the dashed lines are simulation results. Insets show the SEM image of the measured particle (left) and the model used for simulation (right). (B) Surface enhanced Raman spectroscopy (SERS) of rhodamine 6G and 2,2-bipyridine measured on a surface covered with bowtie nanostructures. The baseline of each sample shows the signal level when the nanostructures were absent. This figure has been adapted and modified from Shen et al.34. The figure is reproduced with permission of the authors and published by The American Association for the Advancement of Science, 2018. Please click here to view a larger version of this figure.
Supplemental File 1: CaDNAno file Please click here to download this file.
Supplemental File 2: m13mp18 sequence Please click here to download this file.
Supplemental File 3: Staple strand sequence Please click here to download this file.
The protocol provides great freedom and accuracy in the shape of produced nanostructures. By changing the design of the DNA origami, the shape of the metal nanostructures can be controlled. The final, exact shape of the metal structures is additionally determined by the mask growth step (Step 9) and to a lesser degree by the mask etching (Step 10) should it not be anisotropic. If the mask growth time is extended enough, the holes in the mask will start to grow shut. This can be used to omit the thinnest features of some structures and control gap sizes, as demonstrated in Shen et al.34 with separated triangles of the bowtie origami (Figures 5B). Conversely, thinner shapes can be better preserved by shortening the oxide growth time. This means that it is possible to tune the optical properties displayed in Figure 6, not just by changing the used origami design, but also by tuning the SiO2 film growth.
If the mask thickness is changed significantly, that change must also be reflected in the SiO2 RIE step. Only a very thin layer of SiO2 should be etched (2-5 nm) to barely pierce through the mask holes. This is the most sensitive and crucial part of the whole process. Since the etching time is extremely short, only 10-20 s, exact settings must be experimentally determined when first attempted with new equipment. This is also true for Step 10.4 as some SiO2 is also etched during the a-Si etching. The extent of etched SiO2 is determined by the selectivity of the used a-Si etch parameters, equipment and even individual equipment calibrations. Care should be taken not to etch away the entire SiO2 layer during these two processes.
Another sensitive step is the SiO2 growth. The growth process is dependent on both the chamber humidity and the current activity of the used TEOS. TEOS degrades as it adsorbs water from the air, causing it to become less effective with age. This can manifest as a significantly slower, less controllable growth rate within months even with proper storage of the chemical.34 If the resulting SiO2 layer is thinner than intended, this can indicate a problem with TEOS rather than chamber humidity. While a lower humidity can also result in lower growth rate and thinner film, the resulting film should also be smoother than normal. Meanwhile a coarse grained and rough layer would conversely indicate a problem with high humidity.
It is also possible to perform this protocol on any other freely chosen substrate with two requirements: It must tolerate both HF etching (Step 12) and the 200-300 °C temperatures of PECVD (Step 6). The temperature can be safely lowered to 100 °C for the PECVD of a-Si if a more sensitive substrate is used, but HF cannot be avoided if the protocol is followed exactly as described. To circumvent HF, the application of an additional sacrificial layer would be required. If the requirement of the HF etching is removed, this protocol would become compatible with a wider selection of substrate materials and metals.
As this protocol consists of commonly used and robust micro- and nanofabrication processes, it could be combined with any number of other microfabrication protocols where small feature sizes and complex metal shapes are desired. In the near future, especially with the coming of low-cost DNA origami mass-production31, there is potential for this method to facilitate both general use and high-throughput nanopatterning for interface-based nanophotonics and plasmonics55.
The authors have nothing to disclose.
This work was supported by the Academy of Finland (projects 286845, 308578, 303804, 267497), the Jane and Aatos Erkko Foundation, and the Sigrid Jusélius Foundation. This work was carried out under the Academy of Finland Centers of Excellence Programme (2014–2019). We acknowledge the provision of facilities and technical support by Aalto University Bioeconomy Facilities and OtaNano – Nanomicroscopy Center (Aalto-NMC) and Micronova Nanofabrication Center.
Name | Company | Catalog Number | Comments |
Acetone | Honeywell | 40289H | Semiconductor grade ULSI, ≥ 99.5 % |
Agarose | Fisher Bioreagents | 1036603 | Low-EEO, multi-purpose and molecular biology grade |
Ammonium hydroxide | Fisher Chemical | 10652251 | 25 % ammonia solution, Certified AR for Analysis, d = 0.91 |
BRANSON 5510 | Branson | Ultrasonic bath | |
Dimension Icon | Bruker | Atomic force microscope | |
Electron-beam evaporator IM-9912 | Instrumentti Mattila | Evaporator for PVD | |
Ethidium bromide | Sigma Aldrich | E8751 | Fluorescent dye for DNA staining |
Eon Microplate spectrophotometer | BioTek | UV/Vis spectrophotometer used for DNA origami concentration measurements | |
Gel Doc XR+ Documentation System | BioRad | Gel imaging system | |
Gel Loading Dye, Blue (6×) | New England Biolabs | B7021S | Bromophenol blue-based loading dye for agarose gel electrophoresis |
G-storm GS1 Thermal cycler | Gene Technologies | ||
HBR 4 | IKA | Heating bath | |
Hydrofluoric acid | Honeywell | 40213H | Semiconductor grade, 49.5-50.5 % |
Isopropanol | Honeywell | 40301H | Semiconductor grade VLSI, ≥ 99.8 % |
Magnesium chloride | Sigma Aldrich | M8266 | Anhydrous, ≥ 98 % |
Mini-Sub Cell GT Horizontal Electrophoresis System | BioRad | ||
Plasmalab 80+ PECVD | Oxford Instruments | PECVD system | |
Plasmalab 80+ RIE | Oxford Instruments | RIE system | |
Poly(ethylene glycol) | Sigma Aldrich | 89510 | BioUltra, 8,000 |
PowerPac HC High-Current Power Supply | BioRad | ||
Sapphire substrate (Al2O3) | University Wafer | Thickness: 430 μm, Polish: DSP, Size: 50.8 mm | |
Sigma VP | Zeiss | Scanning electron microscope | |
Silica gel | Merck | 1019691000 | With indicator (orange gel), granulate ~1-3 mm |
Single-stranded Scaffold DNA, type p7249 | Tilibit Nanosystems | At 100 nM concentration | |
Sodium chloride | Sigma Aldrich | S9888 | ACS reagent, ≥ 99.0 % |
Staple strands (oligonucleotides) | Integrated DNA Technologies | Sequences can be ordered e.g. at 100 micromolar in Rnase-free water | |
TAE buffer (50×) pH 8.0 | VWR Chemicals | 444125D | Electran Electrophoresis grade |
Take3 micro-volume plate | BioTek | Used for DNA origami concentration measurements | |
Tetraethyl orthosilicate | Sigma Aldrich | 86578 | ≥ 99.0 % (GC) |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone