Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Presented here is a protocol for establishing acute pontine infarction in a rat model via electrical stimulation with a single pulse.
Pontine infarction is the most common stroke subtype in the posterior circulation, while there lacks a rodent model mimicking pontine infarction. Provided here is a protocol for successfully establishing a rat model of acute pontine infarction. Rats weighing about 250 g are used, and a probe with an insulated sheath is injected into the pons using a stereotaxic apparatus. A lesion is produced by the electrical stimulation with a single pulse. The Longa score, Berderson score, and beam balance test are used to assess neurological deficits. Additionally, the adhesive-removal somatosensory test is used to determine sensorimotor function, and the limb placement test is used to evaluate proprioception. MRI scans are then used to assess the infarction in vivo, and TTC staining is used to confirm the infarction in vitro. Here, a successful infarction is identified that is located in the anterolateral basis of the rostral pons. In conclusion, a new method is described to establish an acute pontine infarction rat model.
Since the 1980s, the middle cerebral artery occlusion (MCAO) model induced by silicone filaments has been widely used in basic stroke research1. Other methods (i.e., suturing of one branch of the MCA2 and photochemically induced focal infarction) have also been used. These models have been termed MCA-based stroke models and have greatly contributed to investigations of the pathophysiological mechanisms underlying stroke and potential therapeutics. Although there are limitations of these experimental models3,4, these methods have been used many labs5,6. MCA-based stroke models represent a stroke in the anterior circulation; however, few reports have investigated models mimicking stroke in the posterior circulation7.
There are significant differences among the etiology, mechanisms, clinical manifestation, and prognosis between anterior and posterior circulation strokes8. Therefore, the results derived from anterior circulation stroke models cannot be applied to posterior circulation stroke. For example, the reperfusion time window for anterior circulation has been extended to 6 h, with a small portion of studies extending to 24 h based on imaging findings9. However, the time window for posterior circulation may be longer than 24 h, according to previous reports10 and our own clinical experiences. This elongated reperfusion time window must be further studied and confirmed in experimental models.
Regarding posterior circulation strokes, pontine infarction is the most common subtype, accounting for 7% of all ischemic stroke cases11,12. According to infarction topography, pontine infarctions are divided into isolated and non-isolated pontine infarctions13. Isolated pontine infarctions are categorized into three types based on the underlying mechanisms: large artery disease (LAD), basilar artery branch disease (BABD), and small artery disease (SAD). Knowledge of the mechanisms, manifestation, and prognosis of pontine infarction has been derived from clinical investigations of cases14. However, a rodent model mimicking pontine infarction has been less investigated.
In previous studies, diffuse brainstem tegmentum injury involving the pons has been explored7. One group attempted to create a pontine infarction model via ligation of the basilar artery (BA)15. Another group used a 10-0 nylon monofilament suture to selectively ligate four points of the proximal BA selectively16. This model mimics LAD, but most pontine infarctions result from BABD and SAD. In addition, selective ligation of the BA is a complicated surgery and has a high death rate.
Provided here is a detailed protocol for an easy-to-perform, easily reproduced, and successful rat model of acute pontine infarction by electrical stimulation.
The protocol was reviewed and approved by the Institution Animal Care and Use Committee of The Second Affiliated Hospital of Guangzhou Medical University, an institution accredited by AAALACi. The rats were provided by the Animal Center of Southern Medical University.
1. Animal
2. Establishment of infarction in the pons
3. Behavioral tests
4. Infarct confirmation by MRI
5. Infarct confirmation by TTC staining
6. Statistics
Six animals were subjected to the surgery protocol described above. The control group as shown in the Figure 4 consisted of six rats. The brain slices shown in the Figure 4 were derived from one rat per group.
The MRI scanning showed that the infarction was located in the basis of the pons (Figure 4A). Since the probe was injected 2 mm to the left of the midline, the infarction was located laterally. This...
The present study provides a protocol for generating an acute pontine infarction rat model. This model can be used for research on prognosis and rehabilitation (including post-stroke chronic pain) in pontine stroke patients.
There are several strengths of this method. First, it provides a rat model of acute pontine infarction for future studies. As mentioned above, pontine infarction is a common stroke subtype that has received less attention. A major shortcoming of stroke research has been th...
No conflict of interest.
This study was financially supported by the National Science Foundation of China (81471181 and 81870933) to Y. Jiang and the National Science Foundation of China (No. 81601011), Natural Science Foundation of Jiangsu Province (No. BK20160345) to J. Zhu and by the Scientific Program of Guangzhou Municipal Health Commission (20191A011083) to Z. Qiu.
Name | Company | Catalog Number | Comments |
4-0 sucture | Shanghai Jinzhong | Surgical instruments | |
Adhesive tape | Shanghai Jinzhong | Surgical instruments | |
Animal anesthesia system | RWD | Wear mask when using the system | |
Bone cement | Shanghai Jinzhong | Surgical instrument | |
Cured clamp | Shanghai Jinzhong | Surgical instrument | |
General tissue scissors | Shanghai Jinzhong | Surgical instrument | |
IndoPhors | Guoyao of China | Sterilization | |
Isoflurane | RWD | 217181101 | |
Lesion Making Device | Shanghai Yuyan | Making a lesion | |
MRI system | Bruker Biospin | Confirmation of infarction in vivo | |
Needle holder | Shanghai Jinzhong | Surgical instrument | |
Penicilin | Guoyao of China | Infection Prevention | |
Probe | Anke | Need some modification | |
Q-tips | Shanghai Jinzhong | Surgical instrument | |
Shearing scissors | Shanghai Jinzhong | Surgical instrument | |
Stereotaxic apparatus | RWD | ||
Suture needle | Shanghai Jinzhong | Surgical instrument | |
Tissue holding forcepts | Shanghai Jinzhong | Surgical instrument | |
TTC | Sigma-Aldrich | BCBW5177 | For infarction confirmation in vitro |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone