Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
A host-guest complex of cucurbit[7]uril and uric acid was formed in an aqueous solution before adding a small amount into Au NP solution for quantitative surface-enhanced Raman spectroscopy (SERS) sensing using a modular spectrometer.
This work describes a rapid and highly sensitive method for the quantitative detection of an important biomarker, uric acid (UA), via surface-enhanced Raman spectroscopy (SERS) with a low detection limit of ~0.2 μM for multiple characteristic peaks in the fingerprint region, using a modular spectrometer. This biosensing scheme is mediated by the host-guest complexation between a macrocycle, cucurbit[7]uril (CB7), and UA, and the subsequent formation of precise plasmonic nanojunctions within the self-assembled Au NP: CB7 nanoaggregates. A facile Au NP synthesis of desirable sizes for SERS substrates has also been performed based on the classical citrate-reduction approach with an option to be facilitated using a lab-built automated synthesizer. This protocol can be readily extended to multiplexed detection of biomarkers in body fluids for clinical applications.
Uric acid, which is the end product of metabolism of purine nucleotides, is an important biomarker in blood serum and urine for the diagnosis of diseases such as gout, preeclampsia, renal diseases, hypertension, cardiovascular diseases and diabetes1,2,3,4,5. Current methods for uric acid detection include colorimetric enzymatic assays, high performance liquid chromatography and capillary electrophoresis, which are time-consuming, expensive and require sophisticated sample preparation6,7,8,9.
Surface-enhanced Raman spectroscopy is a promising technique for routine point-of-care diagnosis as it allows selective detection of biomolecules via their vibration fingerprints and offers numerous advantages such as high-sensitivity, rapid response, ease of use and no or minimal sample preparation. SERS substrates based on noble metal nanoparticles (e.g., Au NPs) can enhance the Raman signals of the analyte molecules by 4 to 10 orders of magnitude10 via strong electromagnetic enhancement caused by surface plasmon resonance11. Au NPs of tailored sizes can be easily synthesized as opposed to the time-consuming fabrication of complex metal nanocomposites12, and thus are widely used in biomedical applications owing to their superior properties13,14,15,16. Attachment of macrocyclic molecules, cucurbit[n]urils (CBn, where n = 5-8, 10), onto the surface of Au NPs can further enhance the SERS signals of the analyte molecules as the highly symmetric and rigid CB molecules can control the precise spacing between the Au NPs and localize the analyte molecules at the center or in close proximity to the plasmonic hotspots via formation of host-guest complexes (Figure 1)17,18,19,20. Previous examples of SERS studies using Au NP: CBn nanoaggregates include nitroexplosives, polycyclic aromatics, diaminostilbene, neurotransmitters and creatinine21,22,23,24,25, with the SERS measurements either being performed in a cuvette or by loading a small droplet onto a custom-made sample holder. This detection scheme is particularly useful to rapidly quantify biomarkers in a complex matrix with a high reproducibility.
Herein, a facile method to form host-guest complexes of CB7 and an important biomarker UA, and to quantify UA with a detection limit of 0.2 μM via CB7-mediated aggregations of Au NPs in aqueous media was demonstrated using a modular spectrometer, which is promising for diagnostic and clinical applications.
1. Synthesis of Au NPs
2. Characterization of Au NPs
3. Formation of CB7-UA complexes
4. SERS sensing of UA
5. Data analysis
In the presented Au NP synthesis, the UV-Vis spectra show a shift of the LSPR peaks from 521 nm to 529 nm after 10 growing steps (Figure 4A,B) while the DLS data shows a narrow size distribution as the size of Au NPs increase from 25.9 nm to 42.8 nm (Figure 4C,D). The average sizes of G0, G5 and G10 measured from TEM images (Figure 4E) are 20.1 ± 2.1 nm, 32.5 ± 2.3 nm and 40.0 ± 2.2 n...
The automated synthesis method described in the protocol allows Au NPs of increasing sizes to be reproducibly synthesized. Although there are some elements that still need to be carried out manually, such as the fast addition of sodium citrate during the seed synthesis and checking periodically to ensure that the PEEK tubing is secure, this method allows Au NPs of large sizes (up to 40 nm), which would usually require multiple manual injections of HAuCl4 and sodium citrate, to be synthesized via continuous add...
The authors have nothing to disclose.
TCL is grateful to the support from the Royal Society Research Grant 2016 R1 (RG150551) and the UCL BEAMS Future Leader Award funded through the Institutional Sponsorship award by the EPSRC (EP/P511262/1). WIKC, TCL and IPP are grateful to the Studentship funded by the A*STAR-UCL Research Attachment Programme through the EPSRC M3S CDT (EP/L015862/1). GD and TJ would like to thank the EPSRC M3S CDT (EP/L015862/1) for sponsoring their studentship. TJ and TCL acknowledge Camtech Innovations for contribution to TJ’s studentship. All authors are grateful to the UCL Open Access Fund.
Name | Company | Catalog Number | Comments |
40 nm gold nanoparticles | NanoComposix | AUCN40-100M | NanoXact, 0.05 mg/ mL, bare (citrate) |
Centrifuge tube | Corning Falcon | 14-432-22 | 50 mL volume |
Cucurbit[7]uril | Lab-made | see ref. 19 | |
Gold(III) chloride trihydrate | Sigma aldrich | 520918 | ≥99.9% trace metals basis |
Luer lock disposable syringe | Cole-Parmer | WZ-07945-15 | 3 mL volume |
Luer-to-MicroTight adapter | LuerTight | P-662 | 360 μm outer diameter Tubing to Luer Syringe |
PEEK tubing | IDEX | 1572 | 360 μm outer diameter, 150 μm inner diameter |
PEEK tubing cutter | IDEX | WZ-02013-30 | Capillary Polymer Chromatography Tubing Cutter For 360 µm to 1/32" OD tubing |
Raman spectrometer | Ocean Optics | QE pro | |
Sodium citrate tribasic dihydrate | Sigma aldrich | S4641 | ACS reagent, ≥99.0% |
Sonicator | |||
Standard Probe | Digi-Sense | WZ-08516-55 | Type-K |
Syringe pump | Aladdin | ALADDIN2-220 | 2 syringes, maximum syringe volume 60 mL |
Thermocouple thermometer | Digi-Sense | WZ-20250-91 | Single-Input Thermocouple Thermometer with NIST-Traceable Calibration |
ThermoMixer | Eppendorf | 5382000031 | With an Eppendorf SmartBlock for 50 mL tubes |
Uric acid | Sigma aldrich | U2625 | ≥99%, crystalline |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone