Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
* Wspomniani autorzy wnieśli do projektu równy wkład.
The verification method described here is adaptable for monitoring pedogenic inorganic carbon sequestration in various agricultural soils amended with alkaline earth metal silicate-containing rocks, such as wollastonite, basalt, and olivine. This type of validation is essential for carbon credit programs, which can benefit farmers that sequester carbon in their fields.
The present study aims to demonstrate a systematic procedure for monitoring inorganic carbon induced by enhanced weathering of comminuted rocks in agricultural soils. To this end, the core soil samples taken at different depth (including 0-15 cm, 15-30 cm, and 30-60 cm profiles) are collected from an agriculture field, the topsoil of which has already been enriched with an alkaline earth metal silicate containing mineral (such as wollastonite). After transporting to the laboratory, the soil samples are air-dried and sieved. Then, the inorganic carbon content of the samples is determined by a volumetric method called calcimetry. The representative results presented herein showed five folded increments of inorganic carbon content in the soils amended with the Ca-silicate compared to control soils. This compositional change was accompanied by more than 1 unit of pH increase in the amended soils, implying high dissolution of the silicate. Mineralogical and morphological analyses, as well as elemental composition, further corroborate the increase in the inorganic carbon content of silicate-amended soils. The sampling and analysis methods presented in this study can be adopted by researchers and professionals looking to trace pedogenic inorganic carbon changes in soils and subsoils, including those amended with other suitable silicate rocks such as basalt and olivine. These methods can also be exploited as tools for verifying soil inorganic carbon sequestration by private and governmental entities to certify and award carbon credits.
CO2 is a major greenhouse gas (GHG), and its concentration in the atmosphere is increasing continuously. Preindustrial global average CO2 was about 315 parts per million (ppm), and as of April 2020, the atmospheric CO2 concentration increased to over 416 ppm, hence causing global warming1. Therefore, it is critical to reduce the concentration of this heat-trapping GHG in the atmosphere. Socolow2 has suggested that to stabilize the concentration of atmospheric CO2 to 500 ppm by 2070, nine 'stabilization wedges' will be required, where each stabilization wedge is an individual mitigation approach, sized to achieve 3.67 Gt CO2 eq per year in emissions reduction.
Carbon capture and storage (CCS) is the main technology to reduce the CO2 from the atmosphere, as recommended by the Mission Innovation initiative, launched at the United Nations Climate Change Conference 20153. To capture atmospheric CO2, the three main storage options available are ocean storage, geological storage, and mineral carbonation4. Focusing on mineral carbonation, CO2 is stored by converting alkaline earth metals, mainly calcium- and magnesium-rich silicates, into thermodynamically stable carbonates for geological timeframes (over millions of years)5. For example, olivine, pyroxene, and serpentine group minerals have the potential to undergo mineral carbonation6; however, under normal conditions, these reactions are limited by slow reaction kinetics. Therefore, to speed up the process under ambient conditions, finely comminuted (crushed/milled) forms of these silicates can be applied to agricultural soils, a process referred to as terrestrial enhanced weathering7. Soil is a natural sink to store CO2, presently being a reservoir for 2500 Gt of carbon, which is thrice the atmospheric reservoir (800 Gt carbon)8. Pedogenic processes in soils and subsoils regulate atmospheric CO2 by two major natural pathways, namely the organic matter cycle and the weathering of alkaline earth metal minerals, affecting organic and inorganic carbon pools, respectively9.
It is estimated that almost 1.1 Gt of atmospheric CO2 is mineralized through chemical rock weathering annually10. Silicate rocks rich in calcium and magnesium (e.g., basalt) are regarded as the primary feedstocks for enhanced weathering9,11,12. Once crushed silicate-containing minerals are applied to agricultural fields, they begin to react with CO2 dissolved in soil porewater, concluding with the mineral precipitation of stable carbonates11,13. Olivine14,15, wollastonite (CaSiO3)13, dolerite, and basalt16 are among minerals which have demonstrated carbon sequestration potential through enhanced weathering in previous studies. Despite the greater availability, and hence possibly greater CO2 sequestration capacity, of magnesium silicates, there are concerns about their application for enhanced weathering in croplands due to their potential environmental impact as a result of Cr and Ni leaching and the possible presence of asbestiform particulates11,15,17,18. As a calcium-bearing silicate, wollastonite is herein highlighted as a prime candidate for this process due to its high reactivity, simple chemical structure, being environmentally benign as well as facilitating the production of carbonates due to the weaker bonding of Ca ions to its silica matrix12,19,20,21. Wollastonite that is mined in Kingston, Ontario, Canada, and is presently commercialized by Canadian Wollastonite for agricultural applications, does not contain elevated levels of hazardous metals. The worldwide wollastonite reserves are estimated to be over 100 Mt, with China, India, USA, Mexico, Canada, and Finland as the top productive countries22.
Enhanced weathering of silicate mineral is reckoned to promote soil health, notably crop yield increase and plant growth improvement, leading to the potential reduction in the application of synthetic fertilizers, which can further contribute to GHG emissions reduction11,18,19. Previous studies have reported that the application of Ca-rich silicate minerals to soils supplies basicity for neutralizing acidity in the soil medium, favoring crop production23,24,25. This also impedes toxic metals mobilization, susceptible to acidic conditions, and enhanced weathering could be useful for retarding erosion through soil organic matter increment11.
Equations 1-3 show how pedogenic carbon sequestration as inorganic carbonates is possible by amending soils with wollastonite. Ambient CO2 enters the soil through rainwater or is produced in soil by microbial activity degrading organic compounds. Once in contact with soil porewater, carbonic acid is formed, which dissociates to form bicarbonate and proton (Equation 1). In the presence of plants, root exudates, such as citric acid and maleic acid, are released, which also provide protons in the system. These protons facilitate the dissolution of wollastonite in the soil through releasing Ca ions and leaving behind amorphous silica (Equation 2). The released Ca ions ultimately react with the bicarbonate to precipitate as carbonates (crystalline calcite or other varieties, depending on geochemical conditions) (Equation 3). This formed calcium carbonate becomes part of the soil inorganic carbon (SIC) fraction26.
Ambient CO2 solvation:
2CO2(g) + 2H2O(l) ↔ 2H2CO3(aq) ↔ 2HCO3- + 2H+ (1)
Wollastonite dissolution (H+ from the dissociation of carbonic acid and root exudates):
CaSiO3(s) + 2 H+ → Ca2+ + H2O(l) + SiO2(s) (2)
Pedogenic inorganic carbonate precipitation:
Ca2+ + 2 HCO3- → CaCO3(s)↓ + H2O(l) + CO2(g) (3)
In our recent work, enhanced weathering through the application of wollastonite to agricultural soils, as a limestone-alternative amendment, has been found effective for CaCO3 precipitation in topsoil, both at laboratory and field scales, and over short (few months) and long (3 years) terms. In the field studies, chemical and mineralogical assessments have revealed that the SIC content increases proportionally to wollastonite application dosage (tonne·hectare-1)13. In laboratory studies, the mineralogical analysis showed the presence of pedogenic carbonate due to carbon sequestration19. Pedogenic carbonate formation in soil depends on several factors, most notably: topography, climate, surface vegetation, soil biotic processes, and soil physicochemical properties27. Our previous study23 determined the role of plants (a leguminous plant (green bean) and a non-leguminous plant (corn)) on wollastonite weathering and inorganic carbonate formation in soil. Our ongoing research on the pedogenic carbon formation and migration in soils and subsoils includes investigating the fate of soil carbonates in agricultural soil, first formed in topsoils due to mineral weathering at various depths and over time. According to Zamanian et al.27, the naturally occurring pedogenic carbonate horizon is found farther from the surface as the rate of local precipitation increases, with the top of this horizon commonly appearing between a few centimeters to 300 cm below the surface. Other ambient and soil parameters, such as soil water balance, seasonal dynamics, the initial carbonate content in parent material, soil physical properties, also impact the depth of this occurrence27. Thus it is of significance to sample soils to a sufficient depth at all opportunities to obtain an accurate understanding of the original and the incremental levels of SIC resulting from enhanced weathering of silicates.
At the field scale, an important limitation is the use of low application rates of silicate soil amendments. As there is limited knowledge on the effect of many silicates (such as wollastonite and olivine) on soil and plant health, commercial producers avoid testing higher application rates that could result in significant carbon sequestration. As a result of such low application rates, as well as the large area of crop fields, a research challenge commonly faced is to determine changes in SIC when values are relatively low, and to recover and isolate the silicate grains and weathering products from the soil to study morphological and mineralogical changes. In our past work, we reported on how physical fractionation of the wollastonite-amended soil (using sieving) enabled a better understanding of the weathering process, especially the formation and accumulation of pedogenic carbonates28. Accordingly, the higher contents of wollastonite and weathering products were detected in the finer fraction of soil, which provided reasonably high values during analyses, ensuring more precise and reliable results. The findings highlight the importance of using physical fractionation, through sieving or other segregation means, for reliable estimation of the sequestrated carbon accumulation in silicate-amended soils. However, the degree of fractionation could vary from soil to soil and from silicate to silicate, so it should be further researched.
Accurate measurement of SIC is critical for establishing a standard and scientific procedure that can be adopted by various researchers interested in analyzing the evolution of SIC and (and organic carbon) over time and depth of the soil. Such methodology enables farmers to claim carbon credit as a result of SIC formation in their field soils. The following protocol describes, in detail: (1) a soil sampling method to be used following soil silicate amendment, which accounts for the statistical significance of the analyzed soil data; (2) a soil fractionation method that improves the accuracy of quantifying changes in pedogenic inorganic carbonate pool as a result of enhanced silicate weathering, and (3) the calculation steps used to determine the SIC sequestration rate as a result of soil silicate amendment. For the purpose of this demonstration, wollastonite, sourced from Canadian Wollastonite, is assumed to be the silicate mineral applied to agricultural soils, and the agricultural soils are considered to be similar to those found in Southern Ontario's farmlands.
The procedure involving amending agricultural soil with wollastonite (e.g., determining the amount of wollastonite to apply per hectare, and the method to spread it over the soil) was described in our previous study13. The study area in our prior and present work is rectangular plots; therefore, the direct random sampling method is appropriate for such studies. This is a commonly used method owing to its low cost, reduced time requirement, and ability to provide adequate statistical uncertainty. Similarly, depending on the various field conditions and the level of statistical significance desired, zonal or grid sampling methods can also be used. Accuracy in soil sampling is essential to reduce statistical uncertainty as a result of sampling bias. When statistics are used, achieving less than 95% confidence (i.e., p < 0.05) is not considered "statistically significant." However, for certain soil studies, the confidence level may be relaxed to 90% (i.e., p < 0.10) owing to the number of uncontrolled (i.e., naturally varying) parameters in the field conditions that affect the general precision of measurements. In this protocol, two sets of samples are collected in order to investigate SIC content and other chemical, mineral, and morphological properties of the soil throughout its vertical profile.
1. Soil sampling method and core collection
Figure 1: Representation of the plots used for sample collection (each plot represents an area of 5 m × 10 m (totally four x 50 m2). Black flags delimit each plot boundary to ease sampling, and white flags mark locations for deep sampling. Please click here to view a larger version of this figure.
Figure 2: Sub-sectioning of each plot for collecting core samples (each sub-section represents an area of 1 m x 2 m), based on directed random sampling method. Please click here to view a larger version of this figure.
2. Soil fractionation prior to chemical analysis
3. Pedogenic inorganic carbon sequestration determination
The SIC content of soils can be determined using various methods, including an automated carbon analyzer or a calcimeter. The automated carbon analyzer for total soil carbon determination measures the CO2 pressure built-up in a closed vessel30. In calcimetry, the evolved volume of CO2 released after acidification, typically by the addition of concentrated HCl acid, of the carbonate-containing sample is measured. The calcimetry method is relati...
Given that collecting samples from fertilized agricultural fields is usually difficult, it is suggested that samples should be collected before nutrient application. It is also advisable to avoid collecting samples from frozen fields. The sampling depth may vary in different areas depending on the ease of sampling over the vertical profile, and the depth of the water table. The selected soil sampling device is dependent on the soil structure and depth of interest33. While it is more convenient to ...
The authors have no conflict of interest.
This work was supported by a Food from Thought Commercialization Grant, which is funded from the Canada First Research Excellence Fund. Canadian Wollastonite provided industrial financial support as part of this Grant.
Name | Company | Catalog Number | Comments |
Analytical scale | Sartorius | Quintix 224-S1 | Four decimals. |
Calcimeter | Eijkelkamp | Model 08.53 | To determine the wt% CaCO3-equivalent in the sample. |
Drying cabinet/muffle furnace | Thermo Scientific | F48055-60 | 50°C or 103 ± 2°C. |
HCl | Fisher Scientific | A144S-500 | Reagent grade (36.5%-38.0%). |
HNO3 | Fisher Scientific | T003090500 | Trace metal analysis grade (69.0%-70.0%) |
Inductively Coupled Plasma Mass Spectrometer (ICP-MS) | PerkinElmer | NexION | To determine the concentration of Ca in the microwave-digested soil. |
Microwave digester | PerkinElmer | Titan | To digest soils in concentrated HNO3. |
pH meter | Oakton | 700 | Calibrated with standard solutions before each set of measurements; temperature corrected to 25 °C. |
Scanning Electron Microscope -Energy Dispersive Spectroscope (SEM-EDS) | Oxford | X-Max20 SSD | To determine the morphology of soil particulates. |
Sieve shaker | Retsch | AS-200 | For soil fractionation. |
Soil auger sampler | Eijkelkamp | 01-16 | Depths down to 700 cm. |
Soil Dakota probe sampler | JMC | PN139 | Depths down to 100 cm. |
Soil probe sampler | JMC | PN031 | Depths down to 30 cm. |
Soil moisture meter | Extech | MO750 | Measure moisture content up to 50% |
Wavelength Dispersive X-ray Fluorescence spectroscope (WDXRF) | Malvern Panalytical | Zetium | To characterize elemental composition of soil. |
X-ray Diffraction analyzer (XRD) | Panalytical | Empyrean | To characterize mineralogicalbproperties of soil. |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone