Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This protocol describes the assembly and operation of a low-cost acoustofluidic device for rapid molecular delivery to cells via sonoporation induced by ultrasound contrast agents.
Efficient intracellular delivery of biomolecules is required for a broad range of biomedical research and cell-based therapeutic applications. Ultrasound-mediated sonoporation is an emerging technique for rapid intracellular delivery of biomolecules. Sonoporation occurs when cavitation of gas-filled microbubbles forms transient pores in nearby cell membranes, which enables rapid uptake of biomolecules from the surrounding fluid. Current techniques for in vitro sonoporation of cells in suspension are limited by slow throughput, variability in the ultrasound exposure conditions for each cell, and high cost. To address these limitations, a low-cost acoustofluidic device has been developed which integrates an ultrasound transducer in a PDMS-based fluidic device to induce consistent sonoporation of cells as they flow through the channels in combination with ultrasound contrast agents. The device is fabricated using standard photolithography techniques to produce the PDMS-based fluidic chip. An ultrasound piezo disk transducer is attached to the device and driven by a microcontroller. The assembly can be integrated inside a 3D-printed case for added protection. Cells and microbubbles are pushed through the device using a syringe pump or a peristaltic pump connected to PVC tubing. Enhanced delivery of biomolecules to human T cells and lung cancer cells is demonstrated with this acoustofluidic system. Compared to bulk treatment approaches, this acoustofluidic system increases throughput and reduces variability, which can improve cell processing methods for biomedical research applications and manufacturing of cell-based therapeutics.
Viral and non-viral platforms have been utilized to enhance molecular delivery to cells. Viral delivery (transduction) is a common technique utilized in cell-based therapies requiring genomic modification. Limitations with viral delivery include potential insertional mutagenesis, limited transgenic capacity, and undesired multiplicity of infection1,2. Therefore, non-viral molecular delivery techniques are in development for a broad range of biomedical and research applications. Common techniques include mechanical, electrical, hydrodynamic, or the use of laser-based energy to enhance uptake of biomolecules into cells 3. Electroporation is a commonly used non-viral molecular delivery platform which has the ability to induce transient perforation in the plasma membrane for intracellular delivery of molecular compounds4,5,6,7,8,9. However, the transient perforation of the plasma membrane is a stochastic process and molecular uptake via electroporation is generally dependent on passive diffusion across the transient membrane pores4,7,8.
An alternative method is the utilization of ultrasound for enhanced intracellular molecular delivery via cavitation of ultrasound contrast agents (i.e., gas-filled microbubbles). Microbubble cavitation induces microstreaming effects in the surrounding media which can cause transient perforation of nearby plasma membranes ("sonoporation") allowing rapid intracellular uptake of biomolecules via passive or active transport mechanisms10,11,12. Sonoporation is an effective technique for the rapid molecular delivery to cells, but this approach often requires expensive equipment and bulk treatment methods which are limited by lower throughput and higher variability in ultrasound exposure conditions13. To address these limitations, acoustofluidic devices, which enable consistent sonoporation of cells in suspension, are currently in development.
Acoustofluidics is an expanding field that integrates ultrasound and microfluidic technologies for a wide variety of applications. This approach has previously been used for particle separation by applying continuous ultrasound energy to induce standing acoustic waves within the fluidic channels14,15,16,17. Particles are sorted toward different parts of the device based on a variety of properties such as particle size, density, and compressibility relative to the medium16. Acoustofluidic technologies are also in development to enable rapid molecular delivery to a variety of cell types for research applications and manufacturing of cell therapies18. Recently, we demonstrated enhanced molecular delivery to erythrocytes using a PDMS-based acoustofluidic device19. In the acoustofluidic platform, cell and microbubble dynamics can be manipulated to induce physical interactions that enable enhanced delivery of biomolecules. The efficiency and consistency of intracellular molecular delivery can potentially be increased by optimizing the distance between cells and microbubbles.
One important application for acoustofluidic-mediated sonoporation involves transport of biomolecules into primary human T cells. Immunotherapies based on adoptive T cell transfer, such as Chimeric Antigen Receptor T cell (CAR T) therapy, are rapidly emerging for treatment of various diseases, including cancer and viruses such as HIV20. CAR T therapy has been particularly effective in pediatric acute lymphoblastic leukemia (ALL) patients, with complete remission rates of 70-90%21. However, T cell manufacturing for these therapies generally depends on viral transduction which is limited by potential insertional mutagenesis, long processing times, and challenges of delivering non-genetic biomolecules such as proteins or small molecules1. Acoustofluidic-mediated molecular delivery methods can potentially overcome these limitations and improve manufacturing of T cell therapies.
Another important application for acoustofluidic-mediated sonoporation involves intracellular delivery of preservative compounds, such as trehalose, which protect cells during freezing and desiccation. Trehalose is produced by some organisms in nature and helps them tolerate freezing and desiccation by protecting their cellular membranes22,23. However, trehalose is not produced by mammalian cells and is impermeable to mammalian cell membranes. Therefore, effective molecular delivery techniques, such as sonoporation, are necessary in order to achieve sufficient intracellular trehalose levels required to protect internal cellular membranes. This approach is currently in development for dry preservation of various cell types.
This protocol provides a detailed description of the assembly and operation of a relatively low-cost acoustofluidic system driven by a microcontroller. Ultrasound contrast agents are utilized to induce sonoporation within the fluidic channels and enable rapid molecular delivery to various cell types, including T cells and cancer cells. This acoustofluidic system can be used for a variety of research applications and may also be useful as a prototype system to evaluate sonoporation methods for improved cell therapy manufacturing processes.
Whole blood donations were collected from healthy donors following protocols approved by the institutional review board at the University of Louisville.
1. Fabrication of acoustofluidic device
2. Assembly and operation of acoustofluidic system
3. Preparation of ultrasound contrast agents
NOTE: Ultrasound contrast agents significantly enhance acoustofluidic delivery of molecular compounds by transiently increasing permeabilization of nearby cellular membranes19. Molecular delivery is very limited without ultrasound contrast agents in this system.
4. Preparation of primary Tcells
5. Preparation of A549 lung cancer cells
An image of the acoustofluidic system assembled inside a 3D-printed case is shown in Figure 1. This protocol produces an acoustofluidic system that can be used to enhance intracellular molecular delivery in multiple cell lines using ultrasound contrast agents.
Figure 2 demonstrates enhanced intracellular delivery of a fluorescent compound, fluorescein, to primary human T cells with acoustofluidic treat...
This protocol describes the assembly and operation of a low-cost acoustofluidic system which enhances intracellular delivery of biomolecules for research applications. There are several important factors to consider when assembling and operating this system. The acoustofluidic device is fabricated in PDMS, which is a biocompatible material that can easily be molded with consistent channel dimensions27.The device channels can be rinsed with 15 mL of 70% ethanol solution prior to acoustofluidic proc...
Co-authors MAM and JAK hold ownership in DesiCorp which may financially benefit from products related to this research.
This work was supported in part by funding from the National Science Foundation (#1827521, #1827521, #1450370) and the National Institutes of Health (U01HL127518). Photolithography services were provided by the University of Louisville Micro/Nano Technology Center.
Name | Company | Catalog Number | Comments |
Fabrication of Acoustofluidic Device | |||
DOW SYLGARD 184 SILICONE ENCAPSULANT CLEAR 0.5 KG KIT | Ellsworth Adhesives | 4019862 (SKU) | https://www.ellsworth.com/products/by-market/consumer-products/encapsulants/silicone/dow-sylgard-184-silicone-encapsulant-clear-0.5-kg-kit/ |
Harris Uni-Core (2.5 mm) | Electron Microscopy Sciences | 69039-25 | |
Microfluidic Reservoir for 15 mL Falcon Tube - S (2/4 port) | Darwin Microfluidics | LVF-KPT-S-2 (SKU) | https://darwin-microfluidics.com/products/15-ml-falcon-tube-microfluidic-reservoir-s-2-4-port |
Microscope Slide | VWR | 16004-430 | https://us.vwr.com/store/product/4646174/vwr-vistavisiontm-microscope-slides-plain-and-frosted-premium |
trichlorosilane | Gelest | 105732-02-3 (Cas. No.) | Chlorosilane is very hazaradous and flammable. Exposure causes severe burns and eye damage. |
Tygon PVC soft plastic tubing (1/16" ID, 1/8" OD) | McMaster-Carr | 5233K51 (Part #) | https://www.mcmaster.com/pvc-tubing/soft-tubing-for-air-and-water/ |
Assembly of Acoustofluidic System | |||
Arduino Uno | Arduino | 7630049200050 (Barcode) | https://store.arduino.cc/usa/arduino-uno-rev3 |
Preparation of Ultrasound Contrast Agents | |||
1,2-distearoyl-sn-glycero-3-ethylphosphocholine (DSEPC) | Avanti Lipids | 890703P-25mg (SKU) | https://avantilipids.com/product/890703 |
1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) | Avanti Lipids | 850365P-25mg (SKU) | https://avantilipids.com/product/850365 |
1,2-distearoyl-sn-glycero-3-phosphoglycerol (DSPG) | Avanti Lipids | 840465P-25mg (SKU) | https://avantilipids.com/product/840465 |
APF-140HP (decafluorobutate gas) | FlouroMed | 355-25-9 (Cas No.) | http://www.fluoromed.com/products/perfluorodecalin/ |
DB-338 Amalgamators | COXO | https://www.coxotec.com/coxo/db-338-amalgamators/ | |
polyoxyethylene 40 stearate | Sigma-Aldrich | P3440-250G (SKU) | https://www.sigmaaldrich.com/catalog/product/sigma/p3440?lang=en®ion=US&gclid= Cj0KCQjwy8f6BRC7ARIsAPIXOjjj Jh_151mYVEUyLZRavt4re9YQMLS vID64X-1KbO3LUKGjVUwb PDAaAqvOEALw_wcB |
Q125 Sonicator | Qsonica | Q125-110 (Ref.) | https://www.sonicator.com/products/q125-sonicator?_pos=1&_sid=406df3776&_ss=r |
Preparation of Primarty T Cells | |||
autoMACs running buffer | Miltenyi Biotec | 130-091-221 (Order No.) | https://www.miltenyibiotec.com/US-en/products/automacs-running-buffer-macs-separation-buffer.html#gref |
Pan T Cell Isolation Kit, human (Pan T-Cell Biotin Antibody Cocktail & Pan T-Cell MicroBead Cocktail) | Miltenyi Biotec | 130-096-535 (Order No.) | https://www.miltenyibiotec.com/US-en/products/pan-t-cell-isolation-kit-human.html#130-096-535 |
magnetic cell sorter (autoMACS Pro Separator) | Miltenyi Biotec | 130-092-545 (Order No.) | https://www.miltenyibiotec.com/US-en/products/automacs-pro-separator-starter-kit.html#130-092-545 |
Preparation of A549 Lung Cancer Cells | |||
Trehalose Assay Kit | Megazyme | K-TREH (Cat. No.) | https://www.megazyme.com/trehalose-assay-kit |
Trypan blue (0.4% in aqueous solution Ready-to-Use, sterile) | VWR | 97063-702 (Cat. No.) | https://us.vwr.com/store/product/7437427/trypan-blue-0-4-in-aqueous-solution-ready-to-use-sterile |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone