Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
We present a protocol for generating orthodontic tooth movement in mice and methods for 3D visualization of the collagen fibers and blood vessels of periodontal ligament without sectioning.
Orthodontic tooth movement is a complex biological process of altered soft and hard tissue remodeling as a result of external forces. In order to understand these complex remodeling processes, it is critical to study the tooth and periodontal tissues within their 3D context and therefore minimize any sectioning and tissue artefacts. Mouse models are often utilized in developmental and structural biology, as well as in biomechanics due to their small size, high metabolic rate, genetics and ease of handling. In principle this also makes them excellent models for dental related studies. However, a major impediment is their small tooth size, the molars in particular. This paper is aimed at providing a step by step protocol for generating orthodontic tooth movement and two methods for 3D imaging of the periodontal ligament fibrous component of a mouse mandibular molar. The first method presented is based on a micro-CT setup enabling phase enhancement imaging of fresh collagen tissues. The second method is a bone clearing method using ethyl cinnamate that enables imaging through the bone without sectioning and preserves endogenous fluorescence. Combining this clearing method with reporter mice like Flk1-Cre;TdTomato provided a first of its kind opportunity to image the 3D vasculature in the PDL and alveolar bone.
The basic underlying biological process in orthodontic tooth movement (OTM) is bone remodeling. The trigger for this remodeling process is attributed to changes in the structure of the periodontal ligament (PDL) such as extracellular matrix (ECM) stress, necrosis as well as blood vessel destruction and formation1,2,3. Other possible triggers for alveolar bone remodeling are related to force sensing by osteocytes in the bone, as well as mechanical deformation of the alveolar bone itself; however their role in OTM is still not fully elucidated4,5.
Despite many studies aimed at revealing structure-function relations of the PDL during OTM, a clear functional mechanism is yet to be defined6,7. The major reason for this is the challenge in retrieving data of a soft tissue (PDL) located between two hard tissues (cementum and alveolar bone). The accepted methods to collect structural information usually necessitate fixation and sectioning that disrupt and modify the PDL structure. Moreover, most of these methods yield 2D data that even if not distorted, give only partial and localized information. Since the PDL is not uniform in its structure and function, an approach that addresses the intact 3D structure of the entire tooth-PDL-bone complex is warranted.
This paper will describe a method for generating an OTM in mice and two methods that enable 3D visualization of the collagen fibers in the PDL without any sectioning of the sample.
Murine models are widely used for in-vivo experiments in medicine, developmental biology, drug delivery and structural studies. They can be genetically modified to eliminate or enhance specific proteins and function; they provide fast, repeatable and predictable developmental control; they are also easy to image due to their small size8. Despite their many advantages, mouse models in dental research are not used frequently, especially when clinical manipulations are warranted, mostly due to the small sized teeth. Animal models such as rats9,10,11, dogs12,13, pigs14,15,16 and monkeys17 are used more often than mice. With the recent development of high-resolution imaging techniques, the advantages of utilizing a mouse model to decipher the convoluted processes in OTM are numerous. This paper presents a method to generate a mesial movement of the molar tooth in the mandible with constant force levels that trigger bone remodeling. Most of the OTM experiments in rodents are done in the maxilla, since the mobility of the mandible and the presence of the tongue add another complexity level. However, the mandible has many advantages when 3D structural integrity is desired. It can be easily dissected as a whole bone; in some species it can be separated into two hemi-mandibles through the fibrous symphysis; it is compact, flat and contains only the teeth without any sinus spaces. In contrast, the maxilla is a part of the skull and closely related to other organs and structures, thus extensive sectioning is needed in order to dissect the alveolar bone with the associated teeth.
Using an in house humidity chamber coupled to a loading system inside a high resolution micro-CT that enables phase enhancement, we developed a method to visualize fresh fibrous tissues in 3D as previously described9,18,19,20,21,22,23. Fresh tissues are scanned immediately after the animal is sacrificed without any staining or fixation, which reduces tissue artefacts as well as alterations of biomechanical properties. These 3D data can be utilized for distribution and direction analyses of the fibers as described elsewhere19.
The second 3D whole tissue imaging method presented here is based on optical clearing of the mandible which enables imaging of the PDL fibers through the bone without any sectioning. Interestingly it also enables visualization of the collagen fibers of the bone itself, however this will not be discussed here. In general, there are two methods for tissue clearing. The first is aqueous-based clearing where the sample is immersed in an aqueous solution with a refractive index greater than 1.4 either through a simple immersion, hyperhydration or hydrogel embedding. However, this method is limited in the level of transparency as well as the structural preservation of the tissue and therefore necessitates fixation of the tissue. The second method which yields highly transparent samples and does not require fixation is the solvent-based clearing method24,25. We generated a modified solvent-based clearing method based on ethyl-3-phenylprop-2-enoate (ethyl cinnamate, ECi) for the mandibular samples. This method has the advantages of using non-toxic food-grade clearing agent, minimal tissue shrinkage, and preservation of fluorescent proteins.
All animal experiments were performed in compliance with NIH's Guidelines for the Care and Use of Laboratory Animals and guidelines from the Harvard University Institutional Animal Care and Use Committee (Protocol no. 01840).
1. Orthodontic Tooth Movement
2. Micro-CT scan of PDL fibers in fresh hemi-mandibles
3. Clearing method (Figure 3)
This paper presents a method to produce OTM as well as two methods for 3D imaging of collagen fibers inside the PDL without any sectioning. For animal research purposes, when alignment of the teeth is not necessary, a tooth movement is considered orthodontic if it generates remodeling of the alveolar bone at all root levels. Constant force level applied on teeth is required in order to generate a reliable OTM. Here, an activated shape-memory NiTi coil is used to generate a consistent force of 10 g throughout the experime...
Generating OTM in mice is highly desired due to the size, genetics and handling advantages. Using the mandible provides an easy handling both in terms of tissue dissection as well as sample preparation and imaging. Here we presented a method to generate OTM with translational movement of the tooth inside the bone within 7 days of OTM. Using this protocol, the overall duration of the tooth movement can be extended, since the activated coil delivers a constant force level for movement of up to approximately 1 mm. Howe...
The authors have nothing to disclose.
This study was supported by the NIH (NIDCR R00- DE025053, PI:Naveh). We would like to thank Harvard Center for Biological Imaging for infrastructure and support. All figures are generated with biorender.com.
Name | Company | Catalog Number | Comments |
1-mL BD Luer-Lok syringe | BD | 309628 | |
1X phosphate buffered saline | VWR Life Sciences | 0780-10L | |
200 proof ethanol | VWR Life Sciences | V1016 | |
Aluminum alloy 5019 wire | Sigma-aldrich | GF15828813 | 0.08 mm diameter wire, length 100th, temper hard. Used as wire ligature around molar. |
Avizo 9.7 | Thermo Fisher Scientific | N/A | Used to analyze microCT scans |
Castroviejo Micro Needle Holders | Fine Science Tools | 12060-01 | |
Clr Plan-Apochromat 20x/1.0,CorrVIS-IR M27 85mm | Zeiss | N/A | Used for second harmonic generation imaging |
Cone socket handle, single ended, hand-form | G.Hartzell and son | 126-CSH3 | Handle of the inspection mirror |
EC Plan-Neofluar 5x/0.16 | Zeiss | 440321-9902 | Used for light-sheet imaging |
Elipar DeepCure-S LED curing light | 3M ESPE | 76985 | |
Eppendorf safe-lock tubes, 1.5mL | Eppendorf | 22363204 | |
Ethyl cinnamate, >= 98% | Sigma-aldrich | W243000-1KG-K | |
Hypodermic Needle, 27G x 1/2'' | BD | 305109 | |
Ketathesia 100mg/ml | Henry Schein Animal Health | NDC:11695-0702-1 | |
KIMWIPES delicate task wipers | Kimberly-Clark | 21905-026 (VWR Catalog number) | Purchased from VWR |
LightSheet Z.1 dual illumination microscope system | Zeiss | LightSheet Z.1/LightSheet 7 | Used for lightsheet imaging |
LSM 880 NLO multi-photon microscope | Zeiss | LSM 880 NLO | Used for two-photon imaging |
MEGAmicro, plane, 5mm dia, SS-Thread | Hahnenkratt | 6220 | Front surface inspectrio mirror |
MicroCT machine, MicroXCT-200 | Xradia | MICRO XCT-200 | |
Mini-Colibri | Fine Science Tools | 17000-01 | |
PermaFlo Flowable Composite | Ultradent | 948 | |
Procedure platform | N/A | N/A | Custom-made from lab materials |
Routine stereo micscope M80 | Leica Micosystems | M80 | |
Sentalloy NiTi open coil spring | TOMY Inc. | A 0.15mm diameter closed NiTi coil with an inner coil diameter of 0.9mm delivers a force of 10g. Similar products can be purchased from Dentsply Sirona. | |
T-304 stainless steel ligature wire, 0.009'' diameter | Orthodontics | SBLW109 | 0.009''(.23mm) diameter, Soft temper |
X-Ject E (Xylazine) 100mg/ml | Henry Schein Animal Health | NDC:11695-7085-1 | |
Z100 Restorative, A2 shade | 3M ESPE | 5904A2 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaPrzeglądaj więcej artyków
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone