Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Here, we describe the procedures developed in our laboratory for preparing powders of small molecule crystals for microcrystal electron diffraction (MicroED) experiments.
A detailed protocol for preparing small molecule samples for microcrystal electron diffraction (MicroED) experiments is described. MicroED has been developed to solve structures of proteins and small molecules using standard electron cryo-microscopy (cryo-EM) equipment. In this way, small molecules, peptides, soluble proteins, and membrane proteins have recently been determined to high resolutions. Protocols are presented here for preparing grids of small-molecule pharmaceuticals using the drug carbamazepine as an example. Protocols for screening and collecting data are presented. Additional steps in the overall process, such as data integration, structure determination, and refinement are presented elsewhere. The time required to prepare the small-molecule grids is estimated to be less than 30 min.
Microcrystal electron diffraction (MicroED) is an electron cryo-microscopy (cryo-EM) method for determining atomic resolution structures from sub-micrometer sized crystals1,2. Crystals are applied to standard transmission electron microscope (TEM) grids and frozen by either plunging into liquid ethane or liquid nitrogen. Grids are then loaded into a TEM operating at cryogenic temperatures. Crystals are located on the grid and screened for initial diffraction quality. Continuous rotation MicroED data are collected from a subset of the screened crystals, where the data are saved using a fast camera as a movie3. These movies are converted to a standard crystallographic format and processed almost identically as an X-ray crystallography experiment4.
MicroED was originally developed to investigate protein microcrystals1,2. A bottleneck in protein crystallography is growing large, well-ordered crystals for traditional synchrotron X-ray diffraction experiments. As electrons interact with matter orders of magnitude stronger than X-rays, the limitations of the crystal size needed to produce detectable diffraction is considerably smaller5. Additionally, the ratio of elastic to inelastic scattering events is more favorable for electrons, suggesting that more useful data can be collected with a smaller overall exposure5. Constant developments have allowed for MicroED data to be collected from the most challenging microcrystals6,7,8,9.
Recently, MicroED has been shown to be a powerful tool for determining the structures of small molecule pharmaceuticals from apparently amorphous materials10,11,12,13. These powders can come straight from a bottle of purchased reagent, a purification column, or even from crushing a pill into a fine powder10. These powders appear amorphous by eye, but may be either entirely composed of nanocrystals or merely contain trace amounts of nanocrystalline deposits in a greater non-crystalline, amorphous fraction. Application of the material to the grid is facile, and the subsequent steps of crystal identification, screening, and data collection might even be automated in the near future14. While others may use different methods for sample preparation and data collection, here the protocols developed and used in the Gonen laboratory for preparing samples of small molecules for MicroED and for data collection are detailed.
1. Preparing small molecule samples
2. Preparing TEM grids
NOTE: Some TEMs with autoloader systems require that the grids be clipped and placed into a cassette prior to loading into the TEM column. Clipping involves physically securing the 3 mm TEM grid into a metal ring that the autoloader can manipulate. This step and subsequent steps can be performed using either normal TEM grids, or TEM grids that have been clipped. For these experiments, it is often easier to manipulate the grids if they have been clipped ahead of time.
3. Applying sample to grids by creating a homogenous fine powder (Method 1)
4. Applying sample to grids by applying the "shaking" method (Method 2)
5. Applying sample to grids using the evaporation method (Method 3)
6. Freezing and loading grids into the TEM
7. Collecting MicroED data
MicroED is a cryoEM method that leverages the strong interactions between electrons and matter, which allows for the investigation of vanishingly small crystals12,13. After these steps, it is expected to have a diffraction movie in crystallographic format collected from microcrystals (Movie 1). Here, the technique is demonstrated using carbamazepine12. The results show a continuous rotation MicroED dataset from a carbamaze...
Sample preparation is typically an iterative process, where optimizations are made after sessions of screening and data collection. For small-molecule samples, it is often prudent to first attempt grid preparation without glow-discharging the grids, since many pharmaceuticals tend to be hydrophobic10,11. If the grids have too few nanocrystalline deposits, it is a good idea to try again after first glow-discharging the grids. It may be the case that the crystals f...
The authors have nothing to disclose.
The Gonen lab is supported by funds from the Howard Hughes Medical Institute. This study was supported by the National Institutes of Health P41GM136508.
Name | Company | Catalog Number | Comments |
0.1-1.5mL Eppendorf tubes | Fisher Scientific | 14-282-300 | Any vial or tube will do. |
Autogrid clips | Thermo-Fisher | 1036173 | Clipped grids are not required for MicroED. They are required for Thermo-Fisher TEMs equipped with an autoloader system. |
Autogrid C-rings | Thermo-Fisher | 1036171 | |
Carbamazapine | Sigma | C4024-1G | Any amount will suffice for these experiments |
CMOS based detector | Thermo-Fisher | CetaD 16M | We used a CetaD 16M, but any detector with rolling shutter mode or sufficiently fast readout is acceptable. |
Delphi software | Thermo-Fisher | N/A | Software on Thermo-Fisher TEM systems that allows for manual rotation of the sample stage |
EPU-D software | Thermo-Fisher | N/A | Commercial software for the acquisition of MicroED data |
Glass cover slides | Hampton | HR3-231 | |
Glow discharger | Pelco | easiGlow | |
High PrecisionTweezers | EMS | 78325-AC | Any high precision tweezer will do |
Liquid nitrogen vessel | Spear Lab | FD-800 | A standard foam vessel for handling specimens under liquid nitrogen - 800mL |
SerialEM software | UC Boulder | N/A | Free software distributed by D. Mastronarde. Department of Molecular, Cellular, and Developmental Biology |
TEM grids | Quantifoil/EMS | Q310CMA | Multi-A 300 mesh grids were used here, but any thin carbon grids will work. For these small molecules, we suggest starting with continuous carbon. |
transmission electron microscope (TEM) | Thermo-Fisher | Talos Arctica | |
Whatman circular filter paper | Millipore-Sigma | WHA1001090 | 90mm or larger |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone