Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
The present protocol describes how to use wireless optogenetics combined with high-speed videography in a single pellet reach-to-grasp task to characterize the neural circuits involved in the performance of skilled motor behavior in freely moving mice.
Fine motor skills are essential in everyday life and can be compromised in several nervous system disorders. The acquisition and performance of these tasks require sensory-motor integration and involve precise control of bilateral brain circuits. Implementing unimanual behavioral paradigms in animal models will improve the understanding of the contribution of brain structures, like the striatum, to complex motor behavior as it allows manipulation and recording of neural activity of specific nuclei in control conditions and disease during the performance of the task.
Since its creation, optogenetics has been a dominant tool for interrogating the brain by enabling selective and targeted activation or inhibition of neuronal populations. The combination of optogenetics with behavioral assays sheds light on the underlying mechanisms of specific brain functions. Wireless head-mounted systems with miniaturized light-emitting diodes (LEDs) allow remote optogenetic control in an entirely free-moving animal. This avoids the limitations of a wired system being less restrictive for animals' behavior without compromising light emission efficiency. The current protocol combines a wireless optogenetics approach with high-speed videography in a unimanual dexterity task to dissect the contribution of specific neuronal populations to fine motor behavior.
Motor skilled behavior is present during most movements performed by us, and it is known to be affected in several brain disorders1,2,3,4,5,6. Implementing tasks that allow studying the development, learning, and performance of skilled movements is crucial to understanding the motor function's neurobiological underpinnings, especially in models of brain injury, neurodegenerative and neurodevelopmental disorders2,7,8,9,10,11,12,13. Reaching for and retrieving objects is done routinely in everyday life actions, and it is one of the first motor skills acquired during early development and then refined through the years5,6. It comprises a complex behavior that requires sensory-motor processes such as the perception of the object's features, movement planning, action selection, movement execution, body coordination, and speed modulation7,14,15,16. Thus, unimanual high dexterity tasks require the participation of many brain structures of both hemispheres16,17,18,19,20,21,22. In mice, the single pellet reach-to-grasp task is characterized for several phases that can be controlled and analyzed separately7,13,23. This feature allows to study the contribution of specific neuronal subpopulations at different stages of acquisition and behavior performance and provides a platform for detailed studies of motor systems13,23,24. The movement occurs in a couple of seconds; thus, high-speed videography should be used for kinematic analysis in distinct stages of the skilled motor trajectory7,25. Several parameters can be extracted from the videos, including body posture, trajectory, velocity, and type of errors25. Kinematic analysis can be used to detect subtle changes during wireless optogenetic manipulation7,23.
Using miniaturized light-emitting diodes (LEDs) to deliver light via a wireless head-mounted system makes it possible to have remote optogenetic control while the animal performs the task. The wireless optogenetic controller accepts single-pulse or continuous trigger commands from a stimulator and sends infrared (IR) signals to a receiver connected to the miniaturized LED23,26. The current protocol combines this wireless optogenetics approach with high-speed videography of a dexterity task to dissect the role of specific neuronal populations during the performance of fine motor behavior23. Since it is a unimanual task, it allows for assessing the participation of structures in both hemispheres. Traditionally, the brain controls the body movement in a highly asymmetric manner; however, high dexterity tasks require careful coordination and control from many brain structures, including ipsilateral nuclei and differential contribution of neuronal subpopulations within nuclei10,20,21,22,23. This protocol shows that subcortical structures from both hemispheres control the trajectory of the forelimb23. This paradigm can be suitable to study other brain regions and models of brain disease.
The procedures involving animal use were conducted following local and national guidelines and approved by the corresponding Institutional Animal Care and Use Committee (Institute of Cellular Physiology IACUC protocol VLH151-19). Drd1-Cre transgenic male mice27, 35-40 days postnatal with C57BL/6 background were used in the current protocol. Mice were kept under the following conditions: temperature 22±1 °C; humidity 55%; light schedule 12/12 h with lights off at 7 p.m. and were weaned at postnatal day 21. Weaned pups were housed in same-sex groups of 2-5. Animals were housed in static housing with micro-barrier tops. Bedding consisted of sterile aspen shavings. Rodent pellets and RO-purified water were provided ad libitum, except when noted.
1. Surgical procedures
2. Reach-to-grasp training
3. Post-hoc histological confirmation
The reach-to-grasp task is a paradigm widely used to study shaping, learning, performance, and kinematics of fine skill movement under different experimental manipulations. Mice learn to execute the task in a couple of days and achieve more than 55% accuracy reaching a plateau after 5 days of training (Figure 2A,B). Similar to what has been previously reported, a percentage of animals do not perform the task appropriately (29.62%), and those should be excluded from further a...
The use of optogenetic manipulation of neuronal populations in well-defined behavioral paradigms is advancing our knowledge about the mechanisms underlying motor control7,23. Wireless methods are especially suitable for tasks that require tests on multiple animals or free movement34,35. Nevertheless, as techniques and devices are refined, it should be the go-to option for any behavioral task combined with...
The authors declare no disclosures.
This work was supported by the UNAM-PAPIIT project IA203520. We thank the IFC animal facility for their help with mouse colonies maintenance and the computational unit for IT support, especially to Francisco Perez-Eugenio.
Name | Company | Catalog Number | Comments |
Anaesthesia machine | RWD | R583S | Isoflurane vaporizer |
Anesket | PiSA | Ketamine | |
Breadboard | Thorlabs | MB3090/M | Solid aluminum optical breadboard |
Camera lense | Canon | 50mmf/ 1.4 manual focus lenses (c-mount) | |
Camera system | BrainVision | MiCAM02 | Camera controller and synchronizer |
Cotton swabs | |||
CS solution | PiSA | Sodium chloride solution 9% | |
Customized training chamber | In house | ||
Drill bit #105 | Dremel | 2 615 010 5AE | Engraving cutter |
Dustless precission chocolate pellets | Bio-Serv | F05301 | |
Ethyl Alcohol | J.T. Baker | 9000-02 | Ethanol |
Eyespears | Ultracell | 40400-8 | Eyespears of absorbent PVA material |
Fluriso | VetOne | V1 502017-250 | Isoflurane |
Glass capillaries | Drumond Scientific | 3-000-203-G/X | Pipettes for NanoJect II |
Hidrogen peroxide | Farmacom | Antiseptic | |
High-speed camera | BrainVision | MiCAM02-CMOS | Monochrome high-speed cameras |
Infrared emmiter | Teleopto | ||
Insulin syringe | |||
LED cannula | Teleopto | TelC-c-l-d | LED cannula 250um 487nm light |
Micropipette 10 uL | Eppendorf | Z740436 | |
Micro-pipette puller | Sutter | P-87 | Horizontal puller |
Microscope LSM780 | Zeiss | Confocal microscope | |
Microtome | |||
Mock receiver | Teleopto | ||
NanoJect II | Drumond Scientific | 3-000-204 | Micro injector |
Oxygen tank | Infra | na | |
pAAV-EF1a-double.floxed-hChR2(H134R)-mCherry-WPRE- HGHpA | Addgene | 20297 | Viral vector for ChR-2 expression |
Parafilm | |||
Paraformaldehyde | Sigma | P-6148 | |
Phosphate saline buffer | Sigma | P-4417 | Phosphate saline buffer tablets |
Pipette tips 10 uL | ThermoFisher | AM12635 | 0.5-10 uL volume |
Pisabental | PiSA | Sodium pentobarbital | |
Plexiglass | commercial | Acrylic sheet | |
Povidone iodine | Farmacom | Antiseptic | |
Procin | PiSA | Xylacine | |
Puralube | Perrigo pharma | 1228112 | Eye lubricant 15% mineral oil/85% petrolatum |
Rotary tool | Kmoon | Mini grinder | Standard |
Scalpel | |||
Scalpel blade | |||
Stereotaxic apparatus | Stoelting | 51730D | Digital apparatus |
Super-Bond C&B | Sun Medical | Dental cement | |
Surgical dispossable cap | |||
Teleopto remote controller | Teleopto | ||
Tg Drd1-Cre mouse line | Gensat | 036916-UCD | Transgene insertion FK150Gsat |
Tissue adhesive | 3M Vetbond | 1469SB | |
TPI Vibratome 1000 plus | Peico | Microtome | |
Vectashield mounting media with DAPI | Vector laboratories | H-1200 | Mounting media |
Wireless receiver | Teleopto | TELER-1-P |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone