This work describes the formation of poly(ethylene glycol) (PEG) microgels via a photopolymerized precipitation reaction. Increasing the PEG molecular weight increased microgel diameter and swelling ratio. Simple adaptations to the PEG microgel precipitation reaction are explored for future applications of microgels as drug delivery vehicles and tissue engineering scaffolds.
Patients implanted with intracranial electrodes provide a unique opportunity to record neurological data from multiple areas of the brain while the patient performs behavioral tasks. Here, we present a method of recording from implanted patients that can be reproducible at other institutions with access to this patient population.
A protocol for robotic printing of cancer cell spheroids in a high throughput 96-well plate format using an aqueous two-phase system is presented.
This protocol provides a comprehensive dissection and analysis guide for the use of deep ocular landmarks, s-opsin immunohistochemistry, Retistruct, and custom code to accurately and reliably orient the isolated mouse retina in anatomical space.
Here we present a protocol to develop a pure uniaxial loading machine. Critical design aspects are employed to ensure accurate and reproducible testing results.
Here, we present protocols for analyzing bone remodeling within a lab-on-a-chip platform. A 3D printed mechanical loading device can be paired with the platform to induce osteocyte mechanostransduction by deforming the cellular matrix. The platform can also be used to quantify bone remodeling functional outcomes from osteoclasts and osteoblasts (resorption/formation).
We employed a geological (coring) sampling protocol to procure cortical bone specimens of uniform size for SRµCT experiments from the anterior aspect of human femora. This method is minimally destructive, efficient, results in cylindrical specimens that minimize imaging artifacts from irregular sample shapes and improves microarchitectural visualization and analysis.
SOBRE A JoVE
Copyright © 2024 MyJoVE Corporation. Todos os direitos reservados