A technique is described for implanting four in vivo electrodes to monitor the neuromuscular control of feeding behavior in Aplysia californica.
We describe an in vitro method for culturing schistosomula of the flatworm parasite Schistosoma mansoni, via the harvesting and transformation of infective cercariae from the fresh water snail intermediate host Biomphalaria glabrata.
Herein we describe the methods to construct, visualize, and quantify the bioluminescent reactions of both firefly and renilla luciferase enzymes expressed in metastatic breast cancer cells during their growth and metastasis in vivo.
Recent advances in 2-photon microscopy have enabled real-time in situ imaging of live tissues in animal models, thereby enhancing our ability to investigate cellular behavior in both physiologic and pathologic conditions. Here, we outline the preparations required to perform intravital imaging of the mouse popliteal lymph node.
We describe a technique to extracellularly record and stimulate from nerves, muscles, and individual identified neurons in vitro while eliciting and observing different types of feeding behaviors in the feeding apparatus of Aplysia.
Plant viral nanoparticles (VNPs) are promising platforms for applications in biomedicine. Here, we describe the procedures for plant VNP propagation, purification, characterization, and bioconjugation. Finally, we show the application of VNPs for tumor homing and imaging using a mouse xenograft model and fluorescence imaging.
In animals with large identified neurons (e.g. mollusks), analysis of motor pools is done using intracellular techniques1,2,3,4. Recently, we developed a technique to extracellularly stimulate and record individual neurons in Aplysia californica5. We now describe a protocol for using this technique to uniquely identify and characterize motor neurons within a motor pool.
To demonstrate MR cancer molecular imaging with a small peptide targeted MRI contrast agent specific to clotted plasma proteins in tumor stroma in a mouse prostate cancer model.
Two-photon intravital imaging can be used to investigate interactions among different cell types in the spinal cord in their native tissue environment in a bone marrow chimeric animal with a dorsal column traumatic spinal cord crush injury.
SOBRE A JoVE
Copyright © 2024 MyJoVE Corporation. Todos os direitos reservados