JoVE Logo

Entrar

É necessária uma assinatura da JoVE para visualizar este conteúdo. Faça login ou comece sua avaliação gratuita.

Neste Artigo

  • Resumo
  • Resumo
  • Introdução
  • Protocolo
  • Resultados
  • Discussão
  • Divulgações
  • Agradecimentos
  • Materiais
  • Referências
  • Reimpressões e Permissões

Resumo

Este trabalho apresenta um método para quantificar rápida e precisamente a pigmentação abdominal de Drosophila melanogaster usando a análise de imagem digital. Este método simplifica os procedimentos entre aquisição de fenótipo e análise de dados e inclui montagem de espécimes, aquisição de imagem, extração de valor de pixel e medição de características.

Resumo

A pigmentação é uma característica morfologicamente simples, mas altamente variável que muitas vezes tem significância adaptativa. Ele serviu extensivamente como um modelo para a compreensão do desenvolvimento e evolução de fenótipos morfológicos. A pigmentação abdominal na Drosophila melanogaster tem sido particularmente útil, permitindo que os pesquisadores identifiquem os loci subjacentes às variações inter-e intraspecíficas da morfologia. Até agora, no entanto, a pigmentação abdominal de D. melanogaster tem sido amplamente testada qualitativamente, através da pontuação, em vez de quantitativamente, o que limita as formas de análise estatística que podem ser aplicadas aos dados de pigmentação. Este trabalho descreve uma nova metodologia que permite a quantificação de vários aspectos do padrão de pigmentação abdominal de D. melanogaster adulta . O protocolo inclui montagem de amostras, captura de imagem, extração de dados e análise. Todo o software usado para captura e análise de imagens tem macrosEscrito para análise de imagens de código aberto. A vantagem dessa abordagem é a capacidade de medir precisamente os traços de pigmentação usando uma metodologia que é altamente reprodutível em diferentes sistemas de imagem. Embora a técnica tenha sido usada para medir a variação nos padrões de pigmentação tergal do adulto D. melanogaster , a metodologia é flexível e amplamente aplicável aos padrões de pigmentação em inúmeros organismos diferentes.

Introdução

A pigmentação mostra uma enorme variação fenotípica entre espécies, populações e indivíduos, e mesmo dentro de indivíduos durante a ontogenia 1 , 2 , 3 , 4 , 5 , 6 . Embora existam inúmeros estudos de pigmentação em uma grande variedade de animais, a pigmentação talvez tenha sido melhor estudada em Drosophila melanogaster , onde o poder total da genética molecular tem sido utilizado para elucidar os mecanismos de desenvolvimento e fisiologia que regulam a pigmentação e como esses mecanismos evoluem 1 , 6 . Sabe-se muito sobre os genes que regulam a síntese bioquímica de pigmentos em D. melanogaster 7 , 8 e os genes que controlam o diário temporal e espacialAtribuição desta biossíntese 9 , 10 , 11 , 12 , 13 . Além disso, o mapeamento genético identificou os loci genéticos subjacentes às diferenças intra e interespecíficas na pigmentação em D. melanogaster 14 , 15 , 16 , 17 . As relações entre pigmentação e traços pleiotrópicos, como o comportamento 18 , 19 e a imunidade 19 , 20 , também foram exploradas, assim como o significado adaptativo dos padrões de pigmentação 15 , 21 , 22 . Como tal, a pigmentação em D. melanogaster emergiu como um poderoso e simples mOdel para o desenvolvimento e evolução de fenótipos complexos.

A pigmentação no adulto D. melanogaster é caracterizada por padrões distintos de melanização em todo o corpo, particularmente nas asas e tórax dorsal e abdômen. É a pigmentação de cada placa cuticular (tergita) no abdômen dorsal, no entanto, que recebeu a maior atenção na pesquisa. Existe uma variação considerável nesta pigmentação ( Figura 1A- F ), por causa de fatores genéticos 17 , 23 e ambientais 24 , 25 . A cutícula de um tergito abdominal é constituída por compartimentos de desenvolvimento anteriores e posteriores ( Figura 1G ), cada um dos quais pode ser subdividido em função da pigmentação e ornamentação 26 . O compartimento anterior inclui seis cutículasTipos (a1-a6), e o compartimento posterior inclui três (p1-p3) ( Figura 1G ). Destes, a cutícula p1, p2 e a1 são tipicamente dobradas sob o tergito em abdômen não esticado, de modo que estejam escondidas. A cutícula fecamente visível é caracterizada por uma banda de pigmentação pesada, aqui referida como uma "faixa de pigmento", composta de tipos de cutícula a4 (cabeludo com cerdas moderadas) e a5 (cabeludo com cerdas largas), com a borda posterior da banda Mais intensamente pigmentado do que a borda anterior ( Figura 1G ). Anterior a essa faixa é uma região de cutícula peluda ligeiramente pigmentada, que tem cerdas posterior (a3) ​​mas não anteriormente (a2). A variação na pigmentação entre as moscas é observada na intensidade da pigmentação e na largura da banda de pigmento. Em geral, a variação é maior nos segmentos mais posteriores (segmentos abdominais 5, 6 e 7) e é menor nos segmentos mais anteriores (ponto abdominalGentios 3 e 4) 24 . Além disso, há um dimorfismo sexual na pigmentação de D. melanogaster , com os machos geralmente tendo quinto e sexto tergitos abdominal totalmente pigmentados ( Figura 4C ).

Na maioria dos estudos de pigmentação abdominal em D. melanogaster , a pigmentação foi tratada como uma característica categórica ou ordinal, com o padrão medido 27 , 28 , 29 ou semi-quantitativamente na escala 14 , 15 , 16 , 17 , 24 , 30 31 , 32 , 33 , 34 , 3536 , 37 . Esses métodos inevitavelmente sofrem de uma falta de precisão, e porque eles dependem da avaliação subjetiva da pigmentação, é difícil comparar os dados entre os estudos. Vários autores quantificaram as dimensões espaciais da pigmentação 38 , 39 , a intensidade da pigmentação de um tipo de cutícula particular 23 , 25 , 39 , 40 ou a intensidade média de pigmentação em todo o tergito abdominal como um todo 41 , 42 , 43 . No entanto, esses métodos de quantificação não medem simultaneamente a intensidade e a distribuição espacial da pigmentação abdominal e, portanto, não captam as nuances de como a pigmentação varia no abd.Tergito ominal. Além disso, vários desses métodos de quantificação 38 , 41 , 42 , 43 exigem a dissecção e a montagem da cutícula abdominal. Isso é demorado e destrói a amostra, tornando-a indisponível para análises morfológicas adicionais. À medida que a compreensão do desenvolvimento e evolução da pigmentação abdominal se aprofunda, serão necessárias ferramentas mais sofisticadas para medir rápida e precisamente a distribuição espacial e a intensidade da pigmentação.

O objetivo geral deste método é utilizar a análise de imagem digital para obter uma medida replicável e precisa da pigmentação abdominal em D. melanogaster . A metodologia inclui três estágios. Primeiro, a mosca adulta é montada de forma não destrutiva, e uma imagem digital do abdômen dorsal é tomada. Em segundo lugar, usando uma macro ImageJ, o usuárioDefine uma faixa de pixels anterio-posterior que se estende desde a parte anterior da cutícula a2 até a parte posterior da cutícula a5 (caixa verde, Figura 1G ) tanto no terceiro como no quarto segmentos abdominais. O valor médio de pixels em toda a largura desta tira é então extraído ao longo de seu eixo longo, gerando um perfil que capta a distribuição espacial e a intensidade da pigmentação à medida que ela muda da anterior para a posterior do tergito. Em terceiro lugar, um roteiro R é usado para descrever o perfil de pigmentação matematicamente usando um spline cúbico. O roteiro R então usa o spline e sua primeira e segunda derivada para extrair a largura da cutícula a2-a5, a largura da faixa de pigmento e os níveis máximo e mínimo de pigmentação. O método, portanto, quantifica as características espaciais e a profundidade da pigmentação abdominal.

Esta metodologia quantifica a pigmentação do terço e quarto tergitos abdominais,Que tem sido o foco de numerosos estudos anteriores 1 , 15 , 23 , 24 , 25 , 28 , 33 , 39 , 42 , exclusivamente ou em combinação com mais tergitos posteriores. Embora menos variável do que o quinto e sexto tergitos abdominais, o terceiro e o quarto tergitos não são completamente pigmentados em machos, pelo que este protocolo pode ser aplicado tanto aos machos como às fêmeas. No entanto, como mostrado aqui, o protocolo pode ser usado para medir a pigmentação no quinto e sexto tergitos abdominais em fêmeas. Além disso, modificações menores dos scripts utilizados para extrair as características do perfil de pigmentação devem permitir que o método seja usado para quantificar a variação na pigmentação em uma grande variedade de outrosOrganismos.

Access restricted. Please log in or start a trial to view this content.

Protocolo

1. Montagem da amostra

NOTA: Armazene as moscas mortas em etanol a 70% na água antes da imagem.

  1. Despeje 10 mL de agar 1,25% dissolvido em água fervente em uma placa de Petri de 60 mm x 15 mm e deixe-o ajustar.
  2. Sob um microscópio de dissecação, use um par de pinças de ponto fino para criar um sulco de aproximadamente 20 mm de largura, 2 mm de largura e 1 mm de profundidade na superfície do gel. Usando pinças finas, incorpora o lado ventral de uma mosca adulta no sulco, com o lado dorsal da mosca projetando acima do gel.
    NOTA: A folga do gel permite um fácil reposicionamento sem danificar a amostra. O mesmo sulco pode ser usado para vários espécimes, embora ele se torne sujo, quebrado e inutilizável com o tempo. O usuário pode fazer outro sulco no mesmo gel. Cada placa pode ser usada para imagens ~ 200 moscas.
  3. Cubra completamente o espécime em etanol a 70% em água para reduzir quaisquer reflexos de luz da cutícula cerosa e para evitar danos nas asas durManipulação de espécimes.

2. Configuração do microscópio

NOTA: As imagens são adquiridas usando um escopo de dissecação, uma base de luz transmitida, uma câmera digital e uma fonte de luz fria de colo de ganso anexada a um computador que executa o software de controle de aquisição de imagens. As instruções de software são específicas do Micro-Manager v1.4.20 44 , que é um software de código aberto que incorpora o ImageJ 45 .

  1. Ligue o microscópio, câmera digital, fonte de luz fria de gooseneck e computador.
  2. Execute o software de captura de imagem para abrir uma janela Micro-Manager e uma janela ImageJ. Na janela ImageJ, clique em "Imagem"> "Tipo"> "8 bits" para configurar todas as imagens como 8 bits. Clique em "live" na janela Micro-Manager para abrir uma janela "Snap / Live" que mostra uma pré-visualização em tempo real da câmera.
    1. Maximize o tamanho da janela "Snap / Live" se neCessary. Selecione "Escala de cinza" no menu suspenso "Modo de exibição" na guia "Contraste" da janela Micro-Manager.
  3. Ligue a fonte de luz fria a sua intensidade máxima e posicione as pontas de cada colar de ganso até aproximadamente 120 mm do palco, um à esquerda e um à direita.
    NOTA: Os usuários também podem usar um iluminador anular, embora isso possa gerar um anel de luz refletida em torno do abdômen da mosca.
  4. Ajuste manualmente a ampliação do microscópio para 60X, de modo que o campo de visão capture uma área de aproximadamente 3 mm de diâmetro no palco.
  5. Coloque um micrómetro de estágio de 2 mm no palco (alterando o fundo para o branco, se necessário). Ao olhar para a visualização ao vivo, concentre-se no micômetro do palco e ajuste a exposição na janela do Micro-Manager, digitando o tempo de exposição em ms na caixa "Exposição".
  6. Para calibrar espacialmente a câmera, selecione a ferramenta "linha reta" em tEle ImageJ janela e desenhar uma linha do comprimento do micrômetro do palco. Na janela ImageJ, clique em "Analisar"> "Definir Escala" para abrir a janela "Definir Escala", digite o comprimento do micômetro em μm na caixa "Distância conhecida" e digite "μm" na "Unidade de comprimento" caixa.
    1. Veja que a janela "Set Scale", em seguida, exibe a escala em "pixels / μm". Anote a escala e clique em "OK".
  7. Na janela "Snap / Live", clique em "Parar" e depois em "Snap" para capturar uma imagem do micrómetro do estágio.
  8. Salve a imagem como um TIFF em escala de cinza de 8 bits para garantir a capacidade de calibrar espacialmente as imagens novamente, se necessário. Na janela ImageJ, clique em "Arquivo"> ​​"Salvar como"> "Tiff ..." Especifique onde salvar o arquivo no navegador de arquivos, nomeie o arquivo e clique em "Salvar".
  9. Mude o palco para preto e coloqueUma placa de Petri que contém uma mosca montada em ágar (etapas 1.1-1.2) no palco.
  10. Olhe através do microscópio e posicione a mosca para garantir que a linha média dorsal seja direta para melhor visualizar o padrão de pigmentação. Mova as asas e os apêndices para garantir que a visão do abdome seja desobstruída. Se a cutícula pigmentada (a2-a5) não estiver visível, aperte o abdômen lateralmente até que esteja (embora o abdômen das moscas seja armazenado em etanol a 70% na água, de modo que isso geralmente não seja necessário).
    NOTA: Ao posicionar a mosca, o usuário pode precisar usar uma ampliação menor (20X). A ampliação deve ser retornada para 60X antes de prosseguir.
  11. Focalize manualmente o abdômen dorsal da mosca. Ajuste manualmente as pontas da fonte de luz para minimizar as sombras e a reflexão no abdômen dorsal.
  12. Ao olhar para a visualização ao vivo na tela do computador, e usando o histograma do valor do pixel na guia "Contraste" da janela Micro-Manager,Ajuste a exposição conforme descrito na etapa 2.4 para maximizar o alcance dos valores de pixel da imagem de pré-visualização.
  13. Remova a mosca e a placa de Petri e substitua-os por um LED (saída espectral de 430-660 nm) conectado a um medidor de tensão, centrado no campo de visão na mesma posição que a mosca. Use o LED e o medidor de tensão como um medidor de luz 46 e grave a tensão gerada pela luz que atinge o LED (~ 125 mV).
    NOTA: O LED e o medidor de tensão são usados ​​para garantir que os níveis de luz sejam constantes em várias sessões de imagem dentro de uma única experiência.
  14. Durante a duração da experiência, não altere ainda mais a posição ou intensidade da fonte de luz, a ampliação do microscópio ou a exposição da câmera.

3. Imagem de amostra

  1. Coloque uma placa de Petri segurando uma mosca montada em ágar (passos 1.1-1.3) no estágio do microscópio preto. Ajuste a posição da mosca para que o terceiro e o quatroH são visíveis os segmentos abdominais e a linha média dorsal é direta, conforme descrito no passo 2.9. Certifique-se de que a ampliação seja de 60x antes de prosseguir.
  2. Focalize manualmente o microscópio de modo que o terço e o quarto tergito abdominal dorsal estejam focados. Use o software de captura de imagem para adquirir uma imagem como um TIFF de escala de cinza de 8 bits, conforme descrito no passo 2.6.
    NOTA: A imagem pode ser capturada em cores e posteriormente convertida em escala de cinza para análise.
  3. Salve a imagem como "SESH000_sampleID.tiff", conforme descrito no passo 2.7.
    NOTA: Aqui, [SESH] é constante, [000] é o número da sessão e é variável, mas deve ter três dígitos e [sampleID] é o que o usuário deseja, embora não contenha caracteres de sublinhado adicionais (_) e Deve ter um comprimento constante. [SampleID] deve incluir detalhes dos fatores utilizados na análise dos dados de pigmentação ( por exemplo, temperatura ou linhagem), separados por um distintivo não alfabéticoCaracterístico, como um hífen (-). Isso permite que esses fatores sejam facilmente analisados ​​em [sampleID] usando o software estatístico padrão.
  4. Retire a placa de Petri do palco e substitua a mosca pelo próximo espécime. Repita as etapas 3.1-3.3 até que todos os espécimes tenham sido fotografados, sem ajustar ainda mais os níveis de iluminação, ampliação ou exposição.

4. Imaging entre várias sessões

  1. Se as imagens precisam ser tomadas em várias sessões, mantenha a intensidade da luz, a exposição e a ampliação nas sessões. No início de cada sessão, verifique a calibração espacial da câmera (etapa 2.4) e a intensidade da luz no estágio (conforme medido pelo LED / medidor de tensão, etapa 2.12).
  2. Capture e guarde uma imagem do micrômetro do estágio (etapas 2.5-2.7) para garantir a capacidade de calibrar espacialmente as imagens novamente, se necessário.
  3. Use pelo menos 15 espécimes de controle e re-crie-os aleatoriamente em cada sessão para alloW para a detecção e eliminação dos efeitos da sessão. Certifique-se de que os espécimes de controle duplicados entre as sessões tenham o mesmo [sampleID] mas diferente [SESH000].
    NOTA: As amostras de controle são moscas coletadas, armazenadas e montadas de forma idêntica a espécimes experimentais, mas são reimprimidas em todas as sessões. O número exato de espécimes de controle dependerá da configuração experimental do usuário. Veja a discussão para mais detalhes.

5. Análise de imagem

NOTA: A análise de imagem é realizada no ImageJ 45 e usa a macro "Measurement of Pigmentation.ijm" fornecida como um arquivo suplementar.

  1. Coloque todas as imagens a serem analisadas na mesma pasta.
  2. Inicie ImageJ e execute a macro "Measurement of Pigmentation.ijm" clicando em "Plugins"> "Macro"> "Executar", selecionando "Medição de Pigmentation.ijm" no navegador de arquivos e clicando em "aberto."
    NOTA: Todas as etapas subseqüentes estão dentro da macro. Cada passo é um comando de macro individual.
  3. Observe que uma caixa de diálogo "Ação necessária" é aberta, indicando "Escolha a pasta onde as imagens são armazenadas". Clique em "OK" e use o navegador de arquivos para selecionar a pasta que contém as imagens e clique em "escolher".
  4. Observe que uma caixa de diálogo "Ação necessária" será aberta, indicando "Escolha a pasta onde deseja que os dados sejam armazenados". Clique em "OK" e use o navegador de arquivos para selecionar a pasta desejada para salvar os perfis de pigmentação. Clique em "escolher".
  5. Observe que uma caixa de diálogo será aberta, perguntando "Quantos caracteres em sua identificação de amostra?" Na caixa de entrada de dados, digite o número de caracteres em [SampleID], conforme especificado na etapa 3.3, e clique em "OK".
  6. Observe que uma caixa de diálogo será aberta, perguntando "Quão grande é seu ROI?" Na caixa de entrada de dados, digite a largura do pixel da caixa anterior-Tira posterior ao longo da qual o perfil de pigmentação deve ser lido (retângulo verde, Figura 1G , Figura 2A e 2A '). Clique em "OK"; O padrão é 20 pixels.
    NOTA: O perfil de pigmentação é lido através de uma tira de cutícula, em vez de uma linha, para reduzir o ruído devido a cabelos e cerdas. A largura desta tira dependerá da resolução da imagem, mas deve ser ~ 1 / 20th da largura do abdômen, em pixels.
  7. Observe que a macro abrirá a imagem da primeira mosca e uma caixa de diálogo perguntará se deve medir a mosca atual (clique em "Sim"), para passar para a próxima mosca (clique em "Não") ou para sair da Macro (clique em "Cancelar").
  8. Observe que uma caixa de diálogo será aberta, indicando "Definir a linha média do abdômen dorsal, de ANTERIOR a POSTERIOR". A ferramenta "linha direta" já será selecionada. Desenhe uma linha anterior a posteriorPara definir a linha média do abdômen dorsal. Clique em "OK"; Ver Figura 2A e 2A ', linha amarela.
    NOTA: Isso é usado para reorientar a imagem de modo que a linha média dorsal esteja horizontalmente na tela, com a anterior na esquerda, facilitando as etapas subseqüentes.
  9. Observe que uma caixa de diálogo será aberta, indicando "Definir a borda POSTERIOR do Tergite 4 logo atrás da banda de pigmento". A ferramenta "linha direta" já será selecionada. Desenhe uma linha da borda da linha média posterior para a borda lateral direita, de modo que o centro da linha (marcado por um quadrado branco) se senta apenas posteriormente ao bordo posterior da banda de pigmento (cutícula a5). Clique em "OK;". Veja a Figura 2A e 2A ', linha magenta.
    NOTA: O script R irá detectar automaticamente a borda posterior da banda de pigmento a partir do perfil de pigmentação.
  10. Observe que um diálogoA caixa será aberta, indicando "Definir a borda ANTERIOR do Tergite 4 na borda anterior da cutícula pigmentada (a2)". A ferramenta "linha direta" já será selecionada. Desenhe uma linha da borda da linha média anterior para a borda lateral direita, de modo que o centro da linha (marcado por um quadrado branco) assente na borda anterior da cutícula pigmentada (cutícula a2). Clique em "OK;". Veja a Figura 2A e 2A ' , linha ciana.
    NOTA: O script R definirá este ponto como a borda anterior da cutícula pigmentada do tergite. Na imagem, a macro mostrará a região de interesse (ROI) ao longo da qual o perfil de pigmentação é lido (retângulo verde, Figura 2A e 2A ', ampliado na Figura 2B e 2B '). A macro também abrirá uma segunda janela mostrando o perfil de pigmentação do ROI ( Figur E 2C e 2C '), onde o eixo x é a posição, expresso como o número de pixels a partir do bordo posterior do perfil, e o eixo y é o valor médio de pixel em cada posição.
  11. Veja as parcelas do perfil de pigmentação que serão abertas pela macro. Se necessário, clique em "Live" na janela de perfil para ajustar a posição do ROI para que não inclua estruturas ( por exemplo, cerdas) que influenciem o perfil de pigmentação. Uma vez que o perfil seja satisfatório, clique em "OK".
  12. Repita as etapas 5.8-5.11 para o Tergite 3.
    NOTA: A macro exporta os perfis de pigmentação como dois arquivos CSV, cada um chamado "SESH000_samplename_TX_profile.csv", onde [SESH000_samplename] é o nome da imagem e [TX] é T3 ou T4 para o terceiro e quarto tergites, respectivamente.
  13. Observe que a macro abre a próxima imagem. Repita as etapas 5.7-5.13 até que todas as imagens tenham sido analisadas.
Jove_title "> 6. Preprocessamento de dados, análise e correção de sessão

NOTA: Toda a análise de dados é realizada em R 47 e usa o script "Análise de pigmentação.R" fornecido. Abaixo, "L ..." indica qual linha (s) do script executar para cada parte da análise. Consulte as Informações Suplementares para obter detalhes adicionais sobre como a análise é conduzida.

  1. Edite o script R para configurar o diretório de trabalho (L6) e defina o caminho do arquivo para a pasta que contém os perfis .csv (L11).
  2. Execute L13-15 para gerar uma lista dos perfis de pigmentação armazenados na pasta de perfil.
  3. Carregue e execute as funções "leitor" e "addPrimaryKey" (L17-41) para ler os perfis em um único quadro de dados.
  4. Edite o script em L43 para especificar a calibração espacial das imagens em μm / pixels, conforme determinado no passo 2.5.
  5. Carregar e executar o "ajuste"Tilt "(L46-58) para converter a posição do perfil (eixo dos x, Figura 2C e 2C ') de pixels-de-posterior-borda-de-ROI para μm-de-ângulo anterior-ROI e o Valor do perfil (eixo y, Figura 2C e 2C ') do valor do pixel (0 = preto, 255 = branco) ao valor da pigmentação (0 = nenhum pigmento, 255 = pigmento máximo).
  6. Carregue e execute a função "spline.der.er" (L60-71) para gerar a spline cúbica dos perfis de pigmentação e suas derivadas primeira e segunda ( Figura 2D -2F e 2D '- 2F ').
  7. Carregue e execute as funções "coord" e "assmbly.coord" (L74-163), primeiro para extrair a posição das bordas posterior (T 3 ) e anterior (T 2 ) da faixa de pigmento ( Figura 2D e 2D ';) E o bordo posterior da cutícula a2 (T 1 , Figura 2D e 2D ') e, em seguida, extrair os valores de pigmentação máximo (P max ) e mínimo (P min ), tomados em T 3 e T 1 , respectivamente.
    NOTA: A borda anterior da cutícula a2 já foi definida no passo 5.9.
  8. Opcional: carregue e execute a função "chek" (L165-175) para verificar se a função "coord" está identificando corretamente as posições T 1-3 para um perfil de pigmentação selecionado aleatoriamente.
  9. Carregue e execute as funções de índice e métricas (L178-193) para gerar uma tabela de dados com os títulos "Sessão", "Amostra", "Tergite", "id" (uma concatenação de Sample e Tergite), "P max " "P min ", " banda W" (largura da banda de pigmento, = T3 - T 2 ) e "W tergite " (largura do pigmento cUticles a2-a5, = T 3 ).
  10. Carregue e execute a função "correção" (L196-234) para gerar uma tabela de dados que corrija P max e P min para quaisquer fatores de incômodo decorrentes dos efeitos da sessão. Use o aumento médio (ou diminuição) em P max ou P min dos espécimes de controle reimprimidos em sessões temporariamente adjacentes.

Access restricted. Please log in or start a trial to view this content.

Resultados

O protocolo foi utilizado para explorar o efeito da temperatura de criação na pigmentação abdominal. Estudos anteriores mostraram que um aumento na temperatura do desenvolvimento resulta em uma diminuição da disseminação da pigmentação abdominal em várias espécies de Drosophila , incluindo D. melanogaster 30 , 32 . Especificamente, em tergitos abdominais 3 e 4, a extensão da pigmentação (largura d...

Access restricted. Please log in or start a trial to view this content.

Discussão

Esta metodologia permite a aquisição precisa, rápida e repetitiva de dados de pigmentação em uma forma quantitativa adequada para múltiplas análises a jusante. O método foi utilizado para adquirir dados sobre o efeito da temperatura na pigmentação abdominal em uma linha isogênica de moscas. No entanto, a metodologia poderia ser utilizada em estudos de genética direta para identificar genes que subjazem as diferenças de pigmentação entre indivíduos, populações ou espécies ou estudos genéticos reversos...

Access restricted. Please log in or start a trial to view this content.

Divulgações

Os autores não têm nada a revelar.

Agradecimentos

Este trabalho foi financiado pela Fundação Nacional da Ciência que concede IOS-1256565 e IOS-1557638 à AWS. Agradecemos a Patricia Wittkopp e a três revisores anônimos por seus comentários úteis sobre uma versão anterior deste artigo.

Access restricted. Please log in or start a trial to view this content.

Materiais

NameCompanyCatalog NumberComments
Dumont #5 Biology ForcepsFST11252-30
AgarSigma-Aldrich5040
Dissecting ScopeLeicaMZ16FA
BaseLeicaMDG41
CameraLeicaDFC280
Gooseneck Cold Light SourceSchottACE 1
Image Acquisition Control SoftwareMicro-Manager v1.3.20https://micro-manager.org/
Image Analysis SoftwareImageJhttps://imagej.nih.gov/ij/
Data Analysis SoftwareR 3.3.2https://www.r-project.org/
LEDThor LabsLEDWE-15
MultimeterFlukeFluke 75 Series II
60 mm x 15 mm Petri dishCelltreat Scientific Products229663
Stage micrometerKlarman Rulings, Inc.KR-867

Referências

  1. Wittkopp, P. J., Beldade, P. Development and evolution of insect pigmentation: Genetic mechanisms and the potential consequences of pleiotropy. Semin. Cell Dev. Biol. 20 (1), 65-71 (2009).
  2. Lindgren, J. Interpreting melanin-based coloration through deep time: a critical review. Proc Roy Soc B-Biol Sci. 282 (1813), (2015).
  3. Kronforst, M. R., Papa, R. The Functional Basis of Wing Patterning in Heliconius Butterflies: The Molecules Behind Mimicry. Genetics. 200 (1), 1-19 (2015).
  4. Albert, N. W., Davies, K. M., Schwinn, K. E. Gene regulation networks generate diverse pigmentation patterns in plants. Plant Signal Behav. 9, e29526(2014).
  5. Monteiro, A. Origin, development, and evolution of butterfly eyespots. Annu Rev Entomol. 60, 253-271 (2015).
  6. Kronforst, M. R. Unraveling the thread of nature's tapestry: the genetics of diversity and convergence in animal pigmentation. Pigm Cell Melanoma Res. 25 (4), 411-433 (2012).
  7. Wright, T. R. The genetics of biogenic amine metabolism, sclerotization, and melanization in Drosophila melanogaster. Adv Genet. 24, 127-222 (1987).
  8. True, J. R. Insect melanism: the molecules matter. TREE. 18 (12), 640-647 (2003).
  9. Kopp, A., Duncan, I. Control of cell fate and polarity in the adult abdominal segments of Drosophila by optomotor-blind. Development. 124 (19), 3715-3726 (1997).
  10. Kopp, A., Muskavitch, M. A., Duncan, I. The roles of hedgehog and engrailed in patterning adult abdominal segments of Drosophila. Development. 124 (19), 3703-3714 (1997).
  11. Kopp, A., Blackman, R. K., Duncan, I. Wingless, decapentaplegic and EGF receptor signaling pathways interact to specify dorso-ventral pattern in the adult abdomen of Drosophila. Development. 126 (16), 3495-3507 (1999).
  12. Kopp, A., Duncan, I., Godt, D., Carroll, S. B. Genetic control and evolution of sexually dimorphic characters in Drosophila. Nature. 408 (6812), 553-559 (2000).
  13. Williams, T. M. The regulation and evolution of a genetic switch controlling sexually dimorphic traits in Drosophila. Cell. 134 (4), 610-623 (2008).
  14. Wittkopp, P. J., Williams, B. L., Selegue, J. E., Carroll, S. B. Drosophila pigmentation evolution: divergent genotypes underlying convergent phenotypes. Proc Natl Acad Sci Usa. 100 (4), 1808-1813 (2003).
  15. Brisson, J. A., De Toni, D. C., Duncan, I., Templeton, A. R. Abdominal pigmentation variation in drosophila polymorpha: geographic variation in the trait, and underlying phylogeography. Evolution. 59 (5), 1046-1059 (2005).
  16. Brisson, J. A., Templeton, A. R., Duncan, I. Population genetics of the developmental gene optomotor-blind (omb) in Drosophila polymorpha: evidence for a role in abdominal pigmentation variation. Genetics. 168 (4), 1999-2010 (2004).
  17. Dembeck, L. M. Genetic Architecture of Abdominal Pigmentation in Drosophila melanogaster. PLoS Genet. 11 (5), e1005163(2015).
  18. Drapeau, M. D., Radovic, A., Wittkopp, P. J., Long, A. D. A gene necessary for normal male courtship, yellow, acts downstream of fruitless in the Drosophila melanogaster larval brain. J Neurobiol. 55 (1), 53-72 (2003).
  19. Hodgetts, R. B., O'Keefe, S. L. Dopa decarboxylase: a model gene-enzyme system for studying development, behavior, and systematics. Annu Rev Entomol. 51, 259-284 (2006).
  20. Marmaras, V. J., Charalambidis, N. D., Zervas, C. G. Immune response in insects: the role of phenoloxidase in defense reactions in relation to melanization and sclerotization. Arch Insect Biochem Physiol. 31 (2), 119-133 (1996).
  21. Kalmus, H. The Resistance to Desiccation of Drosophila Mutants Affecting Body Colour. Proc Roy Soc London B. 130 (859), 185-201 (1941).
  22. Rajpurohit, S., Gibbs, A. G. Selection for abdominal tergite pigmentation and correlated responses in the trident: a case study in Drosophila melanogaster. Biol J Linn Soc. 106 (2), 287-294 (2012).
  23. Pool, J. E., Aquadro, C. F. The genetic basis of adaptive pigmentation variation in Drosophila melanogaster. Mol Ecol. 16 (14), 2844-2851 (2007).
  24. Gibert, P., Moreteau, B., David, J. R. Developmental constraints on an adaptive plasticity: reaction norms of pigmentation in adult segments of Drosophila melanogaster. Evol Dev. 2 (5), 249-260 (2000).
  25. Shakhmantsir, I., Massad, N. L., Kennell, J. A. Regulation of cuticle pigmentation in drosophila by the nutrient sensing insulin and TOR signaling pathways. Dev Dyn. 243 (3), 393-401 (2014).
  26. Struhl, G., Barbash, D. A., Lawrence, P. A. Hedgehog organises the pattern and polarity of epidermal cells in the Drosophila abdomen. Development. 124 (11), 2143-2154 (1997).
  27. Jeong, S., Rokas, A., Carroll, S. B. Regulation of body pigmentation by the Abdominal-B Hox protein and its gain and loss in Drosophila evolution. Cell. 125 (7), 1387-1399 (2006).
  28. Wittkopp, P. J., True, J. R., Carroll, S. B. Reciprocal functions of the Drosophila yellow and ebony proteins in the development and evolution of pigment patterns. Development. 129 (8), 1849-1858 (2002).
  29. True, J. R. Drosophila tan encodes a novel hydrolase required in pigmentation and vision. PLoS Genet. 1 (5), e63(2005).
  30. David, J. R., Capy, P., Gauthier, J. P. Abdominal pigmentation and growth temperature in Drosophila melanogaster: Similarities and differences in the norms of reaction of successive segments. J Evol Biol. 3 (5-6), (1990).
  31. Gibert, J. M., Peronnet, F., Schlotterer, C. Phenotypic plasticity in Drosophila pigmentation caused by temperature sensitivity of a chromatin regulator network . PLoS Genet. 3 (2), e30(2007).
  32. Gibert, P., Moreteau, B., Scheiner, S. M. Phenotypic plasticity of body pigmentation in Drosophila: correlated variations between segments. Genet Sel Evol. 30 (2), 181(1998).
  33. Matute, D. R., Harris, A. The influence of abdominal pigmentation on desiccation and ultraviolet resistance in two species of Drosophila. Evolution. 67 (8), 2451-2460 (2013).
  34. Das, A., Mohanty, S., Parida, B. Abdominal pigmentation and growth temperature in Indian Drosophila melanogaster: Evidence for genotype-environment interaction. J Biosci. 19 (2), 267-275 (1994).
  35. Hollocher, H., Hatcher, J. L., Dyreson, E. G. Evolution of abdominal pigmentation differences across species in the Drosophila dunni subgroup. Evolution. 54 (6), 2046-2056 (2000).
  36. Gibert, P., Moreteau, B., David, J. R. Phenotypic plasticity of body pigmentation in Drosophila melanogaster: genetic repeatability of quantitative parameters in two successive generations. Heredity. 92 (6), 499-507 (2004).
  37. Carbone, M. A., Llopart, A., deAngelis, M., Coyne, J. A., Mackay, T. F. Quantitative trait loci affecting the difference in pigmentation between Drosophila yakuba and D. santomea. Genetics. 171, 211-225 (2005).
  38. Kopp, A., Graze, R. M., Xu, S., Carroll, S. B., Nuzhdin, S. V. Quantitative trait loci responsible for variation in sexually dimorphic traits in Drosophila melanogaster. Genetics. 163 (2), 771-787 (2003).
  39. Bastide, H., Yassin, A., Johanning, E. J., Pool, J. E. Pigmentation in Drosophila melanogaster reaches its maximum in Ethiopia and correlates most strongly with ultra-violet radiation in sub-Saharan Africa. BMC Evol Biol. 14, 179(2014).
  40. Rebeiz, M., Pool, J. E., Kassner, V. A., Aquadro, C. F., Carroll, S. B. Stepwise modification of a modular enhancer underlies adaptation in a Drosophila population. Science. 326 (5960), 1663-1667 (2009).
  41. John, A. V., Sramkoski, L. L., Walker, E. A., Cooley, A. M., Wittkopp, P. J. Sensitivity of Allelic Divergence to Genomic Position: Lessons from the Drosophila tan Gene. G3. 6 (9), 2955-2962 (2016).
  42. Wittkopp, P. J. Local adaptation for body color in Drosophila americana. Heredity. 106 (4), 592-602 (2011).
  43. Wittkopp, P. J. Intraspecific polymorphism to interspecific divergence: genetics of pigmentation in Drosophila. Science. 326 (5952), 540-544 (2009).
  44. Edelstein, A. D. Advanced methods of microscope control using µManager software. Journal of Biological Methods. 1 (2), e10(2014).
  45. U. S. National Institutes of Health. ImageJ v.1.50i. , Bethesda, Maryland, USA. Available from: https://imagej.nih.gov/ij/ (2016).
  46. Mims, F. M. How to Use LEDs to Detect Light. Make:. 36, 136-138 (2013).
  47. R: Language and Environment for Statistical Computing v.3.3.2. R Foundation for Statistical Computing. , Vienna, Austria. Available from: https://www.r-project.org/ (2016).
  48. Bates, D., Machler, M., Bolker, B. M., Walker, S. C. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software. 67 (1), 1-48 (2015).
  49. Shingleton, A. W., Estep, C. M., Driscoll, M. V., Dworkin, I. Many ways to be small: different environmental regulators of size generate distinct scaling relationships in Drosophila melanogaster. Proc Roy Soc Lond B Biol Sci. 276 (1667), 2625-2633 (2009).
  50. French, V., Feast, M., Partridge, L. Body size and cell size in Drosophila: the developmental response to temperature. J Insect Physiol. 44 (11), 1081-1089 (1998).
  51. Houle, D., Govindaraju, D. R., Omholt, S. Phenomics: the next challenge. Nat Rev Genet. 11 (12), 855-866 (2010).
  52. Kültz, D. New frontiers for organismal biology. BioSci. 63 (6), 464-471 (2013).

Access restricted. Please log in or start a trial to view this content.

Reimpressões e Permissões

Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE

Solicitar Permissão

Explore Mais Artigos

GeneticsPigmenta oDrosophilavaria o fenot picamicroscopiaan lise de imagem digitalfen menos

This article has been published

Video Coming Soon

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados