A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This work presents a method to quickly and precisely quantify the abdominal pigmentation of Drosophila melanogaster using digital image analysis. This method streamlines the procedures between phenotype acquisition and data analysis and includes specimen mounting, image acquisition, pixel value extraction, and trait measurement.
Pigmentation is a morphologically simple but highly variable trait that often has adaptive significance. It has served extensively as a model for understanding the development and evolution of morphological phenotypes. Abdominal pigmentation in Drosophila melanogaster has been particularly useful, allowing researchers to identify the loci that underlie inter- and intraspecific variations in morphology. Hitherto, however, D. melanogaster abdominal pigmentation has been largely assayed qualitatively, through scoring, rather than quantitatively, which limits the forms of statistical analysis that can be applied to pigmentation data. This work describes a new methodology that allows for the quantification of various aspects of the abdominal pigmentation pattern of adult D. melanogaster. The protocol includes specimen mounting, image capture, data extraction, and analysis. All the software used for image capture and analysis feature macros written for open-source image analysis. The advantage of this approach is the ability to precisely measure pigmentation traits using a methodology that is highly reproducible across different imaging systems. While the technique has been used to measure variation in the tergal pigmentation patterns of adult D. melanogaster, the methodology is flexible and broadly applicable to pigmentation patterns in myriad different organisms.
Pigmentation shows enormous phenotypic variation between species, populations, and individuals, and even within individuals during ontogeny1,2,3,4,5,6. Although there are myriad studies of pigmentation in a wide variety of animals, pigmentation has perhaps been best studied in Drosophila melanogaster, where the full power of molecular genetics has been used to elucidate the developmental and physiological mechanisms that regulate pigmentation and how these mechanisms evolve1,6. Much is known about the genes that regulate the biochemical synthesis of pigments in D. melanogaster7,8 and the genes that control the temporal and spatial distribution of this biosynthesis9,10,11,12,13. Furthermore, genetic mapping has identified the genetic loci underlying intra- and interspecific differences in pigmentation in D. melanogaster14,15,16,17. The relationships between pigmentation and pleiotropic traits, such as behavior18,19 and immunity19,20, have also been explored, as has the adaptive significance of pigmentation patterns15,21,22. As such, pigmentation in D. melanogaster has emerged as a powerful yet simple model for the development and evolution of complex phenotypes.
Pigmentation in adult D. melanogaster is characterized by distinct patterns of melanization across the body, particularly on the wings and dorsal thorax and abdomen. It is the pigmentation of each cuticular plate (tergite) on the dorsal abdomen, however, that has received the most research attention. There is considerable variation in this pigmentation (Figure 1A-F), because of both genetic17,23 and environmental24,25 factors. The cuticle of an abdominal tergite is made up of anterior and posterior developmental compartments (Figure 1G), each of which can be further subdivided depending based on pigmentation and ornamentation26. The anterior compartment includes six cuticle types (a1-a6), and the posterior compartment includes three (p1-p3) (Figure 1G). Of these, the p1, p2, and a1 cuticle are typically folded under the tergite in un-stretched abdomens so that they are hidden. The reliably visible cuticle is characterized by a band of heavy pigmentation, here referred to as a "pigment band," comprised of cuticle types a4 (hairy with moderate bristles) and a5 (hairy with large bristles), with the posterior edge of the band more intensely pigmented than the anterior edge (Figure 1G). Anterior to this band is a region of lightly pigmented hairy cuticle, which has bristles posteriorly (a3) but not anteriorly (a2). Variation in pigmentation between flies is observed in both the intensity of pigmentation and in the width of the pigment band. In general, variation is greatest in the most posterior segments (abdominal segments 5, 6, and 7) and is lower in the more anterior segments (abdominal segments 3 and 4)24. Furthermore, there is a sexual dimorphism in D. melanogaster pigmentation, with males generally having wholly pigmented fifth and sixth abdominal tergites (Figure 4C).
In most studies of abdominal pigmentation in D. melanogaster, pigmentation has been treated as a categorical or ordinal trait, with the pattern measured qualitatively27,28,29 or semi-quantitatively on a scale14,15,16,17,24,30,31,32,33,34,35,36,37. These methods inevitably suffer from a lack of precision, and because they rely on the subjective assessment of pigmentation, it is difficult to compare the data across studies. Several authors have quantified the spatial dimensions of pigmentation38,39, the intensity of pigmentation of a particular cuticle type23,25,39,40, or the average intensity of pigmentation across the abdominal tergite as a whole41,42,43. Nevertheless, these quantification methods do not measure both the intensity and the spatial distribution of abdominal pigmentation simultaneously and therefore do not capture the nuances of how pigmentation varies across the abdominal tergite. Furthermore, several of these quantification methods38,41,42,43 require the dissection and mounting of the abdominal cuticle. This is both time consuming and destroys the sample, making it unavailable for additional morphological analyses. As the understanding of the development and evolution of abdominal pigmentation deepens, more sophisticated tools to quickly and precisely measure both the spatial distribution and the intensity of pigmentation will be required.
The overall goal of this method is to utilize digital image analysis to obtain a replicable and more precise measure of the abdominal pigmentation in D. melanogaster. The methodology includes three stages. First, the adult fly is non-destructively mounted, and a digital image of the dorsal abdomen is taken. Second, using an ImageJ macro, the user defines an anterior-posterior strip of pixels that extends from the anterior of the a2 cuticle to the posterior of the a5 cuticle (green box, Figure 1G) on both the third and fourth abdominal segments. The average pixel value across the width of this strip is then extracted along its long axis, generating a profile that captures the spatial distribution and intensity of pigmentation as it changes from the anterior to the posterior of the tergite. Third, an R script is used to describe the pigmentation profile mathematically using a cubic spline. The R script then uses the spline and its first and second derivative to extract the width of the a2-a5 cuticle, the width of the pigment band, and the maximum and minimum levels of pigmentation. The method therefore quantifies both the spatial characteristics and the depth of abdominal pigmentation.
This methodology quantifies the pigmentation of the third and fourth abdominal tergites, which have been the focus of numerous previous studies1,15,23,24,25,28,33,39,42, either exclusively or in combination with more posterior tergites. Although less variable than the fifth and sixth abdominal tergites, the third and fourth tergites are not completely pigmented in males, so this protocol can be applied to both males and females. Nevertheless, as shown here, the protocol can be used to measure pigmentation in the fifth and sixth abdominal tergites in females. Furthermore, minor modifications of the scripts used to extract the characteristics of the pigmentation profile should allow for the method to be used to quantify the variation in pigmentation in a wide variety of other organisms.
Access restricted. Please log in or start a trial to view this content.
1. Specimen Mounting
NOTE: Store dead flies in 70% ethanol in water prior to imaging.
2. Microscope Setup
NOTE: Images are acquired using a dissecting scope, transmitted light base, digital camera, and gooseneck cold light source attached to a computer running image acquisition control software. Software instructions are specific to Micro-Manager v1.4.2044, which is an open-source software that incorporates ImageJ45.
3. Specimen Imaging
4. Imaging Across Multiple Sessions
5. Image Analysis
NOTE: Image analysis is conducted in ImageJ45 and uses the "Measurement of Pigmentation.ijm," macro provided as a supplementary file.
6. Data Preprocessing, Analysis, and Session Correction
NOTE: All data analysis is conducted in R47 and uses the "Analysis of Pigmentation.R" script provided. Below, "L…" indicates which line(s) of the script to run for each part of the analysis. See the Supplementary Information for additional details on how the analysis is conducted.
Access restricted. Please log in or start a trial to view this content.
The protocol was used to explore the effect of rearing temperature on abdominal pigmentation. Previous studies have shown that an increase in developmental temperature results in a decrease in the spread of abdominal pigmentation in several species of Drosophila, including D. melanogaster30,32. Specifically, in abdominal tergites 3 and 4, the extent of pigmentation (width of the pigment band) decreases from 17 &#...
Access restricted. Please log in or start a trial to view this content.
This methodology allows for the precise, rapid, and repeatable acquisition of pigmentation data in a quantitative form suitable for multiple downstream analyses. The method has been used to acquire data on the effect of temperature on abdominal pigmentation in an isogenic line of flies. However, the methodology could be used in forward-genetics studies to identify genes that underlie pigmentation differences between individuals, populations, or species, or reverse-genetic studies to explore the effects of specific genes ...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
This work was funded by National Science Foundation grants IOS-1256565 and IOS-1557638 to AWS. We thank Patricia Wittkopp and three anonymous reviewers for their helpful comments on an earlier version of this paper.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Dumont #5 Biology Forceps | FST | 11252-30 | |
Agar | Sigma-Aldrich | 5040 | |
Dissecting Scope | Leica | MZ16FA | |
Base | Leica | MDG41 | |
Camera | Leica | DFC280 | |
Gooseneck Cold Light Source | Schott | ACE 1 | |
Image Acquisition Control Software | Micro-Manager v1.3.20 | https://micro-manager.org/ | |
Image Analysis Software | ImageJ | https://imagej.nih.gov/ij/ | |
Data Analysis Software | R 3.3.2 | https://www.r-project.org/ | |
LED | Thor Labs | LEDWE-15 | |
Multimeter | Fluke | Fluke 75 Series II | |
60 mm x 15 mm Petri dish | Celltreat Scientific Products | 229663 | |
Stage micrometer | Klarman Rulings, Inc. | KR-867 |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved