É necessária uma assinatura da JoVE para visualizar este conteúdo. Faça login ou comece sua avaliação gratuita.
Method Article
Este protocolo fornece aos pesquisadores um método rápido e indireto de medição de atividade de fator de transcrição NF-кB/AP-1 dependente de TLR em uma linha de células de macrófagos de urina em resposta a uma variedade de superfícies poliméricas e camadas de proteína adsorbed que modelam o microambiente de implante biomaterial.
A resposta inflamatória persistente do hospedeiro a um biomaterial implantado, conhecido como reação do corpo estranho, é um desafio significativo no desenvolvimento e implementação de dispositivos biomédicos e construções de engenharia de tecidos. Macrófagos, uma célula imune inata, são os principais intervenientes na reação do corpo estranho, porque eles permanecem no local do implante para a vida do dispositivo, e são comumente estudados para obter uma compreensão desta resposta hospedeira prejudicial. Muitos pesquisadores de biomateriais mostraram que as camadas de proteína adsorbed em materiais implantados influenciam o comportamento do macrófago e, posteriormente, impactam a resposta do hospedeiro. Os métodos deste artigo descrevem um modelo in vitro usando camadas de proteína adsorbed contendo moléculas de danos celulares em superfícies biomateriais de polímeros para avaliar as respostas de macrófagos. Um ensaio celular de macrófago de repórter NF-кB/AP-1 e o ensaio colorimmmétrico de fosfatase colorimétrica foram usados como um método rápido para examinar indiretamente a atividade do fator de transcrição NF-кB/AP-1 em resposta a camadas complexas de proteína adsorense contendo proteínas do sangue e padrões moleculares associados a danos, como um modelo das complexas camadas de proteína adsorbed formadas em superfícies biomateriais in vivo.
A reação do corpo estranho (FBR) é uma resposta crônica do hospedeiro que pode impactar negativamente o desempenho de um material ou dispositivo implantado (por exemplo, dispositivos de entrega de medicamentos, biossensores), através da liberação persistente de mediadores inflamatórios e impedindo a integração entre o material implantado e o tecido circundante1. Esta resposta imune inata é iniciada pelo procedimento de implantação e é caracterizada pela presença a longo prazo de células imunes inatas e formação de cápsulas fibrosas em torno do implante1. No contexto das respostas materiais do hospedeiro, as interações macrofago-material têm um impacto significativo na progressão da resposta e desenvolvimento do hospedeiro de um FBR1. Macrófagos são uma população de células imunes inatas diversas, recrutadas para o local do implante, seja a partir de populações de macrófagos residentes em tecidos ou do sangue como macrófagos derivados de monócito. Eles começam a se acumular no local do implante logo após a implantação, e dentro de dias se tornam a população celular predominante no microambiente de implante. Macrófagos adeptos de materiais, juntamente com células gigantes de corpo estranho (FBGC) formadas através da fusão de macrófagos, podem persistir na superfície material para a vida útil do implante2,3. Consequentemente, os macrófagos são considerados atores-chave na resposta do corpo estranho devido a seus papéis orquestrando os passos característicos do FBR: resposta inflamatória aguda, remodelação do tecido e formação do tecido fibrótico1.
Receptores semelhantes a pedágios (TLRs) são uma família de receptores de reconhecimento de padrões que são expressos por muitas células imunes, incluindo macrófagos, e têm sido mostrados para desempenhar um papel significativo na inflamação e cicatrização de feridas. Além de ligantes derivados de patógenos, As TLRs são capazes de ligar moléculas endógenas, conhecidas como padrões moleculares associados a danos (DAMPs), que são liberados durante a necrose celular e ativam vias de sinalização inflamatória, resultando na produção de citocinas proinflamatórias4. Nós e outros propusemos que os danos causados durante os procedimentos de implantação de biomateriais de tecidos moles liberam DAMPs, que então adsorb para superfícies biomateriais, além de proteínas do sangue e modulam interações celulares subsequentes5,6. Quando os macrófagos interagem com a camada de proteína adsorbed em um implante, seus TLRs de superfície podem reconhecer DAMPs adsorbed e ativar cascatas de sinalização do proInflammatory, conduzindo à ativação e à produção do fator da transcrição nF-κB e do AP-1 de citocinas. Nós mostramos previamente que os macrófagos do murine aumentaram significativamente a atividade nf-κB/AP-1 e o fator α da necrose do tumor (TNF-α, secreção de citocina proinflamatória) em resposta às camadas de proteína adsorbed contendo DAMP em uma variedade de superfícies poliméricas em comparação com superfícies apenas com soro ou plasma adsorbed (ou seja, nenhum DAMPs presente), e que esta resposta é amplamente mediada pelo TLR2, enquanto o TLR4 desempenha um papel menor5.
A linha celular de macrófagos nf-κB/AP-1 repórter(Tabela de Materiais)utilizada neste protocolo é um método conveniente para medir a atividade relativa nf-κb e AP-1 em macrófagos5,7,8. Em combinação com inibidores da via TLR, esta linha celular é uma ferramenta útil para investigar a ativação do TLR e seu papel na inflamação em resposta a uma variedade de estímulos5,7,8. As células repórter são uma linha de células modificada semelhante a macrófago de camundongos que pode produzir facadamente a fosfatase alcalina embrionária secretada (SEAP) sobre a ativação do fator de transcrição NF-κB e AP-19. O ensaio colorimmmático de fósforo alcalino enzimático(Tabela de Materiais)pode então ser usado para quantificar quantidades relativas de expressão SEAP como uma medida indireta da atividade NF-κB/AP-1. Como NF-κB e AP-1 estão a jusante de muitas vias de sinalização celular, neutralizar anticorpos e inibidores visando TLRs específicos (por exemplo, TLR2) ou moléculas de adaptador TLR (por exemplo, MyD88) podem ser usadas para verificar o papel de uma via específica. A metodologia descrita neste artigo fornece uma abordagem simples e rápida para avaliar a contribuição da sinalização tlr em respostas de macrófagos de urina para uma variedade de superfícies poliméricas com camadas de proteína adsorbed contendo proteínas do sangue e DAMPs como um modelo in vitro de biomateriais implantados.
1. Preparação de mídia e reagente
2. Superfícies da cultura da pilha de revestimento com poli (methacrylate do methyl)
3. Superfícies da cultura da pilha de revestimento com polydimethylsiloxane
4. Superfícies da cultura da pilha de revestimento com poli fluorado (tetrafluoroetileno)
5. Fazendo lysate a partir de células 3T3
6. Avaliando o efeito das camadas de proteína adsorbed e receptores semelhantes a pedágio na atividade nf-κb de macrófagos
Nota: Para um esquema do fluxo de trabalho experimental e do layout da placa, consulte a Figura 1A e a Figura Suplementar 1,respectivamente.
Os métodos de limpeza para as superfícies revestidas de polímero foram testados para garantir que não houvesse interrupção do revestimento, o que seria visto como uma mudança no ângulo de contato com a água para um coverslip de vidro não revestido (Figura 2). Foram encontrados slides de microscópio revestidos de PMMA em 70% de etanol por 1 h para remover o revestimento PMMA(Figura 2,painel esquerdo), provavelmente devido à solubilidade do PMMA em 80 ...
Um foco principal do nosso laboratório é a resposta do hospedeiro a implantes sólidos de tecidos moles biomateriais e, em particular, como os danos celulares sofridos durante o procedimento de implantação afetam a resposta do hospedeiro. O trabalho apresentado aqui descreve experimentos preliminares usando uma linha de células de macrófago repórter e lysate celular contendo DAMP in vitro, para investigar a influência das moléculas liberadas durante danos celulares (ou seja, da cirurgia de implante) nas resposta...
Os autores não têm nada a divulgar.
Os autores reconhecem com gratidão o financiamento operacional do Canadian Institutes of Health Research Project (PTJ 162251), do Queen's University Senate Advisory Research Committee e do apoio à infraestrutura do Canadian Foundation for Innovation John Evan's Leadership Fund (Project 34137) e do Ministry of Research and Innovation Ontario Research Fund (Project 34137). L.A.M. foi apoiada por um Queen's University R. Samuel McLaughlin Fellowship, um Natural Sciences and Engineering Research Council of Canada Canadian Graduate Scholarship Master's Award e uma Bolsa de Pós-Graduação de Ontário. Os autores gostariam de agradecer ao Dr. Myron Szewczuk por seu generoso dom da linha de células de macfagagem repórter NF-κB/AP-1 e drs. Michael Blennerhassett e Sandra Lourenssen pelo uso de seu sistema de imagem gel e leitor de placas.
Name | Company | Catalog Number | Comments |
Cell culture reagents | |||
anti-mouse/human CD282 (TLR2) | Biolegend | 121802 | |
CLI-095 (TLR4 inhibitor) | Invivogen | TLRL-CLI95 | |
C57 complement plasma K2 EDTA 10ml, innovative grade US origin | InnovativeResearch | IGMSC57-K2 EDTA-Compl-10ml | Mouse plasma |
Dulbecco's modified eagle medium (DMEM) | Sigma Aldrich | D6429-500ML | |
Dulbecco's phosphate buffered saline (DPBS) | Fisher Scientific | 14190250 | No calcium, no magnesium |
Fetal bovine serum (FBS), research grade | Wisent | 98150 | |
LPS-EK | Invivogen | TLRL-EKLPS | Lipopolysaccharide from Escherichia coli K12 |
NIH/3T3 fibroblasts | ATCC | CRL-1658 | |
Pam3CSK4 | Invivogen | tlrl-pms | Synthetic triacylated lipopeptide - TLR1/2 ligand |
Penicillin/streptomycin | Sigma Aldrich | P4333-100ML | |
Plasmocin | Invivogen | ANT-MPP | Mycoplasma elimination reagent |
RAW-Blue cells | Invivogen | raw-sp | NF-κB/AP-1 reporter macrophage cell line |
Trypan blue solution, 0.4% | Fisher Scientific | 15250061 | |
TrypLE express enzyme (1X) | Fisher Scientific | 12604021 | animal origin-free recombinant cell dissociation enzyme |
Zeocin | Invivogen | ANT-ZN-1 | |
Kits and assays | |||
ELISA precoated plates, mouse IL-6 | Biolegend | B213022 | |
ELISA precoated plates, mouse TNF-α | Biolegend | B220233 | |
Endotoxin (Escherichia coli) - Control standard endotoxin (CSE) | Associates of Cape Cope Inc. | E0005-5 | Endotoxin for standard curve in chromogenic endotoxin assay |
LAL water, 100 mL | Associates of Cape Cope Inc. | WP1001 | Used with chromogenic endotoxin assay |
Micro BCA protein assay | Fisher Scientific | PI23235 | |
Limulus amebocyte lysate (LAL) Pyrochrome endotoxin test kit | Associates of Cape Cope Inc. | C1500-5 | Chromogenic endotoxin assay reagent |
QUANTI-Blue alkaline phosphatase detection medium | Invivogen | rep-qb2 | Alkaline phosphatase assay to indirectly measure NF-κB/AP-1 activity |
Polymeric coating reagents | |||
Chloroform, anhydrous | Sigma Aldrich | 288306-1L | |
Ethyl alcohol anhydrous | Commercial Alcohols | P006EAAN | Sigma: Reagent alcohol, anhydrous, 676829-1L |
Straight tapered fine tip forceps | Fisher Scientific | 16-100-113 | |
Fluorinert FC-40 solvent | Sigma Aldrich | F9755-100ML | Fluorinated solvent for fPTFE |
Cell culture grade water (endotoxin-free) | Fisher Scientific | SH30529LS | |
Poly(methyl methacrylate) (PMMA) | Sigma Aldrich | 182230-25G | |
Sylgard 184 elastomer kit | Fisher Scientific | 50822180 | |
Teflon-AF (fPTFE) | Sigma Aldrich | 469610-1G | Poly[4,5-difluoro-2,2-bis(trifluoromethyl)-1,3-dioxole-co-tetrafluoroethylene] |
Consumables | |||
Adhesive plate seals | Fisher Scientific | AB-0580 | |
Axygen microtubes, 1.5 mL | Fisher Scientific | 14-222-155 | |
Borosilicate glass scintillation vials, with white polypropylene caps | Fisher Scientific | 03-337-4 | |
Clear PS 48-well plate | Fisher Scientific | 08-772-52 | |
Clear TCPS 96-well plate | Fisher Scientific | 08-772-2C | |
Clear TCPS 48-well plate | Fisher Scientific | 08-772-1C | |
Cover glasses, circles | Fisher Scientific | 12-545-81 | |
Falcon tissue culture treated flasks, T25 | Fisher Scientific | 10-126-10 | |
sticky-Slide 8 Well | Ibidi | 80828 | |
Superfrost microscope slides | Fisher Scientific | 12-550-15 | |
Tissue culture treated flasks, T150 | Fisher Scientific | 08-772-48 |
Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE
Solicitar PermissãoThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados