É necessária uma assinatura da JoVE para visualizar este conteúdo. Faça login ou comece sua avaliação gratuita.

Neste Artigo

  • Resumo
  • Resumo
  • Introdução
  • Protocolo
  • Resultados
  • Discussão
  • Divulgações
  • Agradecimentos
  • Materiais
  • Referências
  • Reimpressões e Permissões

Resumo

Este projeto permite que pequenos laboratórios desenvolvam uma plataforma fácil de usar para a fabricação de dispositivos microfluidos multicamadas precisos. A plataforma consiste em um adaptador de alinhamento de máscara de microscópio impresso tridimensionalmente usando o qual dispositivos microfluidos multicamadas com erros de alinhamento de < 10 μm foram alcançados.

Resumo

Este projeto visa desenvolver uma plataforma fácil de usar e econômica para a fabricação de dispositivos microfluidos precisos e multicamadas, que normalmente só podem ser alcançados usando equipamentos caros em um ambiente de sala limpa. A parte chave da plataforma é um adaptador de alinhamento de máscara de microscópio impresso tridimensional (3D) (MMAA) compatível com microscópios ópticos regulares e sistemas de exposição à luz ultravioleta (UV). O processo global de criação do dispositivo foi muito simplificado por causa do trabalho feito para otimizar o design do dispositivo. O processo implica encontrar as dimensões adequadas para os equipamentos disponíveis no laboratório e imprimir em 3D o MMAA com as especificações otimizadas. Os resultados experimentais mostram que o MMAA otimizado projetado e fabricado pela impressão 3D funciona bem com um microscópio comum e sistema de exposição à luz. Utilizando um molde mestre preparado pelo MMAA impresso em 3D, os dispositivos microfluidos resultantes com estruturas multicamadas contêm erros de alinhamento de < 10 μm, o que é suficiente para microchips comuns. Embora o erro humano através do transporte do dispositivo para o sistema de exposição à luz UV possa causar maiores erros de fabricação, os erros mínimos alcançados neste estudo são alcançáveis com a prática e o cuidado. Além disso, o MMAA pode ser personalizado para se encaixar em qualquer microscópio e sistema de exposição UV, fazendo alterações no arquivo de modelagem no sistema de impressão 3D. Este projeto fornece aos laboratórios menores uma ferramenta de pesquisa útil, pois requer apenas o uso de equipamentos que normalmente já estão disponíveis para laboratórios que produzem e usam dispositivos microfluidos. O protocolo detalhado a seguir descreve o processo de design e impressão 3D para o MMAA. Além disso, também são descritos os passos para a aquisição de um molde mestre multicamadas usando o MMAA e produzindo chips microfluidos poli (dimetilsiloxano) (PDMS).

Introdução

Um campo bem desenvolvido e promissor em pesquisa de engenharia é a microfabidade devido à vasta extensão de aplicações que empregam plataformas microfluídicas. Microfabricação é um processo em que estruturas são produzidas com características de μm ou tamanho menor usando diferentes compostos químicos. Como a pesquisa microfluida se desenvolveu nos últimos 30 anos, a litografia macia tornou-se a técnica de microfabbricação mais popular com a qual produzir microchips feitos de poli (dimetilsiloxano) (PDMS) ou substâncias similares. Esses microchips têm sido amplamente utilizados para a miniaturização de práticas laboratoriais comuns1,

Protocolo

1. Projetando o MMAA

  1. Obtenha as dimensões da bandeja do sistema de emissão de luz UV disponível para ser o limite superior para as dimensões do porta-wafer (ou unidade de exposição UV) mostradas na Figura 1. Como mostrado na Figura 2A,meça o diâmetro (d) da borda circular interna, a altura interna (h) da bandeja do sistema de emissão de luz UV, a largura total (w) e o comprimento (l) da bandeja.
    NOTA: Como exemplo, o sistema de exposição à luz UV disponível tinha dimensões internas da bandeja de 5 polegadas (") x 5" x 0,25" com um recorte circular de 4". As dimensões do MMAA foram então projetada....

Resultados

Através da otimização e uso do MMAA (Figura 1),foram fabricados moldes mestres multicamadas com erro mínimo de alinhamento. O MMAA final foi fabricado utilizando o processo de impressão 3D de filamento fundido (FFF)(Figura 2). O processo FFF confere maior precisão às dimensões desejadas do dispositivo. O MMAA é composto por duas peças principais (Figura 3): a peça base e o fixador personalizado. A peça base consiste na .......

Discussão

O protocolo acima mencionado descreve o procedimento para impressão 3D de um MMAA e o uso do sistema para criar um molde mestre preciso, multicamada, dispositivo microfluido. Embora o dispositivo seja fácil de usar, existem passos críticos dentro do protocolo que requerem prática e cuidado para garantir o alinhamento adequado das camadas de molde mestre. O primeiro passo crítico é o design do MMAA. É essencial ao projetar o MMAA para determinar as medidas exatas para o dispositivo que permitirá um ajuste adequado.......

Divulgações

Os autores não têm nada a revelar.

Agradecimentos

Os autores gostariam de reconhecer o Centro de Experiências Transformadoras de Graduação da Texas Tech University por fornecer financiamento para este projeto. Os autores também gostariam de reconhecer o apoio do Departamento de Engenharia Química da Texas Tech University.

....

Materiais

NameCompanyCatalog NumberComments
Acrylonitrile Butadiene Styrene (ABS), 3D Printing FilamentProvided by the Texas Tech University 3D printing facility
BX53, Upright MicroscopeOlympus
Form 2, Stereolithography 3D printerFormlabs
Advanced Hot Plate StirrerVWR97042-642
Isoproyl Alcohol, 70% (v/v)VWRBDH7999-4
Light Colored MarkerSharpie
Magnets, 3 mm x 3 mmWOTOYASIN #: B075PLVW8W
SYLGARD 184 Silicone Elastomer KitDOW4019862
Petri Dish, 150 mm x 15 mmVWR25384-326
Printed PhotomasksCAD/Art Services, Inc.
Aluminum Support Jack - 8" x 8", Scissor LiftVWR12620-904
Silicon WaferUniversity Wafer452
Sodium HydroxideVWR
Sonication BathBransonCPX3800H
Spin CoaterLaurell Technologies CorporationModel WS-650MZ-23NPPB
STRATASYS SR-30MakerBot Industries, LLCSR-30Dissolvable support material for 3D printing
Stratasys uPrint SE 3D PrinterComputer Aided Technology, LLC
SU-8 50KayakuY131269 0500L1GL
SU-8 100KayakuY131273 0500L1GL
SU-8 DeveloperKayakuY020100 4000L1PE
Super glueGorilla Glue
Trichloro(1H,1H,2H,2H-perfluorooctyl)silaneSigma-Aldrich448931-10G
TapeScotch
Form Cure, UV Curing ChamberFormlabsFH-CU-01
UV-KUB2, UV Light-Exposure BoxKloeUV-KUB2

Referências

  1. Betancourt, T., Brannon-Peppas, L. Micro- and nanofabrication methods in nanotechnological medical and pharmaceutical devices. International Journal of Nanomedicine. 1 (4), 483-495 (2006).
  2. Wheeler, A. R., et al. Micro....

Reimpressões e Permissões

Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE

Solicitar Permissão

Explore Mais Artigos

EngenhariaEdi o 167impress o 3Dfotolitografiamicrofluidosengenharia qu micadispositivo microfluido multicamadaslitografia macia

This article has been published

Video Coming Soon

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados