A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
This project allows small laboratories to develop an easy-to-use platform for the fabrication of precise multilayer microfluidic devices. The platform consists of a three-dimensionally printed microscope mask alignment adapter using which multilayer microfluidic devices with alignment errors of <10 µm were achieved.
This project aims to develop an easy-to-use and cost-effective platform for the fabrication of precise, multilayer microfluidic devices, which typically can only be achieved using costly equipment in a clean room setting. The key part of the platform is a three dimensionally (3D) printed microscope mask alignment adapter (MMAA) compatible with regular optical microscopes and ultraviolet (UV) light exposure systems. The overall process of creating the device has been vastly simplified because of the work done to optimize the device design. The process entails finding the proper dimensions for the equipment available in the laboratory and 3D-printing the MMAA with the optimized specifications. Experimental results show that the optimized MMAA designed and manufactured by 3D printing performs well with a common microscope and light exposure system. Using a master mold prepared by the 3D-printed MMAA, the resulting microfluidic devices with multilayered structures contain alignment errors of <10 µm, which is sufficient for common microchips. Although human error through transportation of the device to the UV light exposure system can cause larger fabrication errors, the minimal errors achieved in this study are attainable with practice and care. Furthermore, the MMAA can be customized to fit any microscope and UV exposure system by making changes to the modeling file in the 3D printing system. This project provides smaller laboratories with a useful research tool as it only requires the use of equipment that is typically already available to laboratories that produce and use microfluidic devices. The following detailed protocol outlines the design and 3D printing process for the MMAA. In addition, the steps for procuring a multilayer master mold using the MMAA and producing poly(dimethylsiloxane) (PDMS) microfluidic chips is also described herein.
A well-developed and promising field in engineering research is microfabrication because of the vast expanse of applications employing microfluidic platforms. Microfabrication is a process wherein structures are produced with µm- or smaller-sized features using different chemical compounds. As microfluidic research has developed over the last 30 years, soft lithography has become the most popular microfabrication technique with which to produce microchips made from poly(dimethylsiloxane) (PDMS) or similar substances. These microchips have been widely used for the miniaturization of common laboratory practices1,....
1. Designing the MMAA
Through the optimization and use of the MMAA (Figure 1), multilayer master molds with minimal alignment error were fabricated. The final MMAA was fabricated using the fused filament fabrication (FFF) 3D-printing process (Figure 2). The FFF process confers increased accuracy for the desired device dimensions. The MMAA consists of two main pieces (Figure 3): the base piece and the custom fastener. The base piece consists of the U.......
The aforementioned protocol outlines the procedure for 3D-printing an MMAA and using the system to create a precise, multilayer, microfluidic device master mold. Although the device is easy to use, there are critical steps within the protocol that require practice and care to ensure proper alignment of the master mold layers. The first critical step is the design of the MMAA. It is essential when designing the MMAA to determine the exact measurements for the device that will allow for a proper fit inside the UV light exp.......
The authors would like to acknowledge the Center for Transformative Undergraduate Experiences from Texas Tech University for providing funding for this project. The authors would also like to acknowledge support from the Chemical Engineering Department at Texas Tech University.
....Name | Company | Catalog Number | Comments |
Acrylonitrile Butadiene Styrene (ABS), 3D Printing Filament | Provided by the Texas Tech University 3D printing facility | ||
BX53, Upright Microscope | Olympus | ||
Form 2, Stereolithography 3D printer | Formlabs | ||
Advanced Hot Plate Stirrer | VWR | 97042-642 | |
Isoproyl Alcohol, 70% (v/v) | VWR | BDH7999-4 | |
Light Colored Marker | Sharpie | ||
Magnets, 3 mm x 3 mm | WOTOY | ASIN #: B075PLVW8W | |
SYLGARD 184 Silicone Elastomer Kit | DOW | 4019862 | |
Petri Dish, 150 mm x 15 mm | VWR | 25384-326 | |
Printed Photomasks | CAD/Art Services, Inc. | ||
Aluminum Support Jack - 8" x 8", Scissor Lift | VWR | 12620-904 | |
Silicon Wafer | University Wafer | 452 | |
Sodium Hydroxide | VWR | ||
Sonication Bath | Branson | CPX3800H | |
Spin Coater | Laurell Technologies Corporation | Model WS-650MZ-23NPPB | |
STRATASYS SR-30 | MakerBot Industries, LLC | SR-30 | Dissolvable support material for 3D printing |
Stratasys uPrint SE 3D Printer | Computer Aided Technology, LLC | ||
SU-8 50 | Kayaku | Y131269 0500L1GL | |
SU-8 100 | Kayaku | Y131273 0500L1GL | |
SU-8 Developer | Kayaku | Y020100 4000L1PE | |
Super glue | Gorilla Glue | ||
Trichloro(1H,1H,2H,2H-perfluorooctyl)silane | Sigma-Aldrich | 448931-10G | |
Tape | Scotch | ||
Form Cure, UV Curing Chamber | Formlabs | FH-CU-01 | |
UV-KUB2, UV Light-Exposure Box | Kloe | UV-KUB2 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved