É necessária uma assinatura da JoVE para visualizar este conteúdo. Faça login ou comece sua avaliação gratuita.

Neste Artigo

  • Resumo
  • Resumo
  • Introdução
  • Protocolo
  • Resultados
  • Discussão
  • Divulgações
  • Agradecimentos
  • Materiais
  • Referências
  • Reimpressões e Permissões

Resumo

O presente protocolo descreve um método que utiliza o amarelo lúcifer em um modelo enteróide apical-out para determinar a permeabilidade intestinal. Este método pode ser usado para determinar a permeabilidade paracelular em enteróides que modelam doenças inflamatórias intestinais, como enterocolite necrosante.

Resumo

Os enteróides são uma ferramenta de pesquisa emergente no estudo de doenças inflamatórias intestinais, como a enterocolite necrosante (NEC). Eles são tradicionalmente cultivados na conformação basolateral-out (BO), onde a superfície apical da célula epitelial está voltada para o lúmen interno. Nesse modelo, o acesso à superfície luminal dos enteroides para tratamento e experimentação é desafiador, o que limita a capacidade de estudar as interações hospedeiro-patógeno. Para contornar isso, foi criado um modelo apical-out neonatal (AO) para enterocolite necrosante. Uma vez que as alterações da permeabilidade das células epiteliais intestinais são patognomônicas para a NEC, este protocolo descreve o uso do amarelo lucifer (LY) como marcador de permeabilidade paracelular. O LY atravessa a barreira epitelial intestinal através de todas as três principais vias paracelulares: poros, vazamento e irrestrito. O uso de LY em um modelo AO permite um estudo mais amplo da permeabilidade em NEC. Após a aprovação do IRB e o consentimento dos pais, amostras cirúrgicas de tecido intestinal foram coletadas de recém-nascidos prematuros humanos. As células-tronco intestinais foram colhidas via isolamento de criptas e usadas para cultivar enteróides. Os enteróides foram cultivados até a maturidade e, em seguida, transformados AO ou deixados em conformação BO. Estes não foram tratados (controle) ou foram tratados com lipopolissacarídeo (LPS) e submetidos a condições hipóxicas para a indução de NEC in vitro . O LY foi utilizado para avaliar a permeabilidade. A coloração imunofluorescente da proteína apical zonula occludens-1 e da proteína basolateral β-catenina confirmou a conformação da AO. Os enteróides AO e BO tratados com LPS e hipóxia demonstraram um aumento significativo da permeabilidade paracelular em comparação com os controles. Ambos os enteróides AO e BO mostraram aumento da absorção de LY no lúmen dos enteróides tratados em comparação com os controles. A utilização de LY em um modelo enteróide AO permite a investigação de todas as três principais vias de permeabilidade paracelular. Além disso, permite a investigação das interações hospedeiro-patógeno e como isso pode afetar a permeabilidade em comparação com o modelo enteróide BO.

Introdução

Os enteroides são estruturas tridimensionais (3D) derivadas de células-tronco intestinais humanas com restrição de órgãos 1,2. Eles são compostos inteiramente de linhagem epitelial e contêm todos os tipos diferenciados de células epiteliais intestinais2. Os enteróides também mantêm a polaridade celular composta por uma superfície luminal apical formando um compartimento interno e uma superfície basolateral voltada para o meio circundante. Os enteróides são um modelo único na medida em que preservam as características do hospedeiro a partir do qual foram gerados3.....

Protocolo

A presente pesquisa foi realizada em conformidade com a aprovação do Conselho de Revisão Institucional (IRB, #11610, 11611) na Universidade de Oklahoma. O consentimento dos pais foi necessário antes da coleta de espécimes cirúrgicos humanos de acordo com as especificações do IRB. Após a aprovação do IRB e o consentimento dos pais, o tecido intestinal delgado humano foi obtido de lactentes (idade gestacional (IG) corrigida variando de 36-41 semanas no momento da coleta da amostra, todos com história de parto prematuro em um GA estimado de 25-34 semanas, 2:1 M:F) submetidos a cirurgia para NEC ou outra ressecção intestinal, como retirada de ostomia ou reparo de atresia.....

Resultados

Conformação AO
Enteroides suspensos em meios LWRN a 50% por 72 h assumem uma conformação AO (Figura 1). Isso foi confirmado por meio de coloração imunofluorescente utilizando montagens inteiras enteroides da proteína apical, zonula occludens-1 (ZO-1), e proteína basolateral, β-catenina (Figura 1). Os enteroides AO mostram ZO-1 (verde) na superfície externa apical do enteróide, enquanto a β-catenina (vermelha) está na sup.......

Discussão

A permeabilidade intestinal é complexa e reflexiva da função de barreira epitelial. A barreira intestinal compreende uma única camada de células epiteliais que medeia o transporte transcelular e paracelular14. A permeabilidade paracelular depende de proteínas de junção apertada que selam o espaço entre as células epiteliais14. Dentro desse transporte paracelular, existem três vias distintas pelas quais as moléculas podem se cruzar: poros, vazamento e irrestrito<.......

Divulgações

Os autores não relatam nenhum interesse proprietário ou comercial em qualquer produto mencionado ou conceito discutido neste artigo.

Agradecimentos

Gostaríamos de agradecer a Ashley Nelson, do Centro Médico da Universidade de Rochester, por sua ajuda instrumental com nosso modelo enteróide. Também gostaríamos de agradecer à Divisão de Cirurgia Pediátrica da Universidade de Oklahoma por seu apoio a este projeto. Este trabalho foi apoiado pelo Instituto Nacional de Saúde [NIH Grant R03 DK117216-01A1], o Oklahoma Center for Adult Stem Cell Research e o Presbyterian Health Foundation Grant #20180587 concedido ao Departamento de Cirurgia do Centro de Ciências da Saúde da Universidade de Oklahoma.

....

Materiais

NameCompanyCatalog NumberComments
[leu] 15-gastrin 1Millipore SigmaG9145-.1MG
100 µm sterile cell strainerCorning431752
100% LWRN conditioned mediaMade in-house following Miyoshi et al.12
24-well tissue culture plateCorning3526
96-well black, clear bottom plateGreiner Bio-One655090
A-83-01R&D Systems2939/10
Alexa Fluor 488 goat anti-rabbit secondary ab, 1:1000InvitrogenA-11034
Alexa Fluor 594 goat anti-mouse secondary ab, 1:1000InvitrogenA-11032
Amphotericin BThermo Fisher Scientific15290026
Anti-zonula occludens-1 rabbit primary ab, 1:200Cell Signaling#D6L1E
Anti-β-catenin mouse primary ab, 1:100Cell Signaling#14-2567-82
B-27 supplement minus Vitamin AThermo Fisher Scientific17504-044
Barrier PAP penScientific Device Laboratory9804-02
BMM (Matrigel)CorningCB-40230C
Cell Recovery SolutionCorning354270
Dissecting scissors
DMEMThermo Fisher Scientific11-965-118
DMEM/F-12Thermo Fisher Scientific11320-082
DPBSThermo Fisher Scientific14-190-144
Epidermal Growth Factor (EGF)Millipore SigmaGF144
Ethylenediaminetetraacetic acid (EDTA)Millipore SigmaEDS-500G
EVOS m7000 Imaging systemInvitrogenAMF7000
Fetal Bovine Serum (FBS)Gemini Bio-Products100-525
Fluoroshield with DAPIMillipore SigmaF6057-20mL
Forceps
GentamicinThermo Fisher Scientific15-750-060
Glass coverslips
GlutaMAXThermo Fisher Scientific35050-061
GraphPad Prism 9Dotmatics
InsulinThermo Fisher Scientific12585014
Lipopolysaccharide (LPS)Millipore SigmaL2630-25MG
Lucifer Yellow CH, Lithium SaltInvitrogenL453
Modular incubator chamberBillups Rothenberg Inc.MIC101
N-2 supplementThermo Fisher Scientific17502-048
N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid (HEPES)Thermo Fisher Scientific15630-080
N-AcetylcysteineMillipore SigmaA9165-5G
NicotinamideMillipore SigmaN0636-100G
Penicillin-StreptomycinThermo Fisher Scientific15140-148
Refrigerated swinging bucket centrifuge
Refrigerated tabletop microcentrifuge
RPMI 1640 MediumThermo Fisher Scientific11875093
SB202190Millipore SigmaS7067-5MG
SpectraMax iD3 microplate readerMolecular devices
Tube Revolver RotatorThermoFisher Scientific88881001
Ultra-low attachment 24-well tissue culture plateCorning3473
Y-27632, ROCK inhibitor (RI)Tocris1254

Referências

  1. Ranganathan, S., Smith, E. M., Foulke-Abel, J. D., Barry, E. M. Research in a time of enteroids and organoids: How the human gut model has transformed the study of enteric bacterial pathogens. Gut Microbes. 12 (1), 1795492 (2020).
  2. De Fazio, L., et al.

Reimpressões e Permissões

Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE

Solicitar Permissão

Explore Mais Artigos

Imunologia e Infec oEdi o 185

This article has been published

Video Coming Soon

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados