É necessária uma assinatura da JoVE para visualizar este conteúdo. Faça login ou comece sua avaliação gratuita.

Neste Artigo

  • Resumo
  • Resumo
  • Introdução
  • Protocolo
  • Resultados Representativos
  • Discussão
  • Divulgações
  • Agradecimentos
  • Materiais
  • Referências
  • Reimpressões e Permissões

Resumo

Uma estrutura de imagem hiperespectral rápida e multimodal foi desenvolvida para obter imagens de geração de soma e frequência vibracional de banda larga (VSFG), juntamente com modalidades de imagem de segunda geração harmônica (SHG) de campo claro. Devido à frequência do infravermelho ser ressonante com vibrações moleculares, o conhecimento microscópico estrutural e morfológico mesoscópico é revelado de amostras permitidas por simetria.

Resumo

A geração de soma de frequência vibracional (VSFG), um sinal óptico não-linear de segunda ordem, tem sido tradicionalmente usada para estudar moléculas em interfaces como uma técnica de espectroscopia com uma resolução espacial de ~100 μm. No entanto, a espectroscopia não é sensível à heterogeneidade de uma amostra. Para estudar amostras mesoscopicamente heterogêneas, nós, juntamente com outros, empurramos o limite de resolução da espectroscopia VSFG para o nível de ~1 μm e construímos o microscópio VSFG. Esta técnica de imagem não só pode resolver morfologias de amostras através de imagens, mas também gravar um espectro VSFG de banda larga em cada pixel das imagens. Por ser uma técnica óptica não linear de segunda ordem, sua regra de seleção permite a visualização de estruturas automontadas não centrossimétricas ou quirais comumente encontradas em biologia, ciência dos materiais, bioengenharia, entre outras. Neste artigo, o público será guiado por um projeto de transmissão invertida que permite a obtenção de imagens de amostras não fixas. Este trabalho também mostra que a microscopia VSFG pode resolver informações geométricas químico-específicas de folhas auto-montadas individuais combinando-as com um solver de função de rede neural. Por fim, as imagens obtidas sob configurações de campo brilhante, SHG e VSFG de várias amostras discutem brevemente as informações únicas reveladas pelas imagens VSFG.

Introdução

A geração de soma de frequência vibracional (VSFG), uma técnica óptica não linear de segunda ordem1,2, tem sido usada extensivamente como uma ferramenta de espectroscopia para perfilar quimicamente amostras permitidas por simetria 3,4,5,6,7,8,9,10,11,12,13

Protocolo

1. Microscópio VSFG de varredura de linha hiperespectral

  1. Sistema laser
    1. Use um sistema de laser pulsado (ver Tabela de Materiais) centrado em 1025 nm ± 5 nm. O laser é regulado em 40 W, 200 kHz (200 μJ/pulso) com uma largura de pulso de ~290 fs.
      NOTA: A taxa de repetição exata pode variar, e um laser de alta taxa de repetição geralmente funciona melhor para este microscópio VSFG.
    2. Guie a saída do laser de semente em um amplificador paramétrico óptico comercial (OPA) para gerar um feixe de infravermelho médio (MIR) (veja Tabela de Materiais). Sintonize o MIR com a frequência de interesses (

Resultados Representativos

figure-representative results-68
Figura 5: Estrutura molecular, morfologia e orientação potencial do SDS@β-CD. (A) Vista superior e (B) Estrutura química lateral do SDS@β-CD. (C) Distribuição representativa e heterogênea das folhas de mesoescala no plano amostral. A subunidade molecular poderia ter diferentes orientações .......

Discussão

As etapas mais críticas são de 1,42 a 1,44. É fundamental alinhar bem a lente objetiva para uma resolução espacial óptica. Também é importante coletar o sinal emitido, relé e projetar o feixe de varredura como uma linha nas fendas de entrada. Alinhamentos adequados garantiriam a melhor resolução e relação sinal-ruído. Para uma amostra típica, como folhas de SDS@2 β-CD de 100 μm por 100 μm, uma imagem de boa resolução (~1 μm de resolução) com uma alta relação sinal-ruído levaria 20 minutos. Isso .......

Divulgações

Os autores não têm nada a revelar.

Agradecimentos

O desenvolvimento do instrumento é apoiado pelo Grant NSF CHE-1828666. ZW, JCW e WX são apoiados pelo National Institutes of Health, National Institute of General Medical Sciences, Grant 1R35GM138092-01. A BY é apoiada pela Youth Innovation Promotion Association, Academia Chinesa de Ciências (CAS, 2021183).

....

Materiais

NameCompanyCatalog NumberComments
1x Camera PorThorlabsWFA4100connect a camera to a microscope or optical system
25.0 mm Right-Angle Prism Mirror, Protected GoldThorlabsMRA25-M01reflect light and produce retroreflection, redirecting light back along its original path
3” Universal Post Holder-5 PackThorlabsUPH3-P5hold and support posts of various sizes and configurations
30 mm to 60 mm Cage Plate, 4 mm ThickThorlabsLCP4Sconvert between a 30 mm cage system and a 60 mm cage system
500 mm Tall Cerna Body with Epi ArmThorlabsCEA1500provide the function of enabling top illumination techniques in microscopy
60 mm Cage Mounted Ø50.0 mm IrisThorlabsLCP50Scontrol the amount of light passing through an optical system
60 mm Cage Mounting BracketThorlabsLCP01Bmount and position a 60 mm cage system in optical setups
Air spaced EtalonSLS Optics Ltd.Customizedgenerate narrow-band 1030 nm light 
Cage Plate Mounting BracketThorlabsKCB2hold and adjust mirrors at a precise angle
CCDAndor TechnologiesNewton 2D CCD for frequency and spatial resolution
Collinear Optical Parametric AmplifierLight ConversionOrpheus-One-HPTunable MID light generator
Copper ChlorideThermo Fischer ScientificA16064.30Self-assembly component
Customized Dichroic MirrorNewportCustomizedselectively reflects or transmits light based on its wavelength or polarization
Ext to M32 Int AdapterThorlabsSM1A34provide compatibility and facilitating the connection between components with different thread types
Infinity Corrected Refractive ObjectiveZeiss420150-9900-000Refractive Objective
Infinity Corrected Schwarzschild ObjectivePike Technologies Inc.891-0007Reflective objective
LaserCarbide, Light-ConversionC18212Laser source
M32x0.75 External to Internal RMSThorlabsM32RMSSadapt or convert the threading size or type of microscope objectives 
M32x0.75 External to M27x0.75 Internal EngravingThorlabsM32M27Sadapt or convert the threading size or type of microscope objectives 
Manual Mid-Height Condenser Focus ModuleThorlabsZFM1030adjust the focus of an optical element
MonochromatorAndor TechnologiesShamrock 500iProvides frequency resolution for each line scan
Motorized module with 1" Travel for Edge-Mounted ArmsThorlabsZFM2020control the vertical positon of the imaging objective
NanopositionerMad City Labs Inc.MMP33D sample stage
Resonant ScannerEOPCSC-25325Hz resonant beam scanner
RGB Color CCD CameraThorlabsDCU224CBrightfield camera, discontinued but other cameras will work just as well
RGB tube lensThorlabsITL200white light collection
Right Angle Kinematic BreadboardThorlabsOPX2400incorporate a sliding mechanism with two fixed positions
Right Angle Kinematic Mirror Mount, 30 mmThorlabsKCB1hold and adjust mirrors at a precise angle
Right Angle Kinematic Mirror Mount, 60 mmThorlabsKCB2hold and adjust mirrors at a precise angle
SM2, 60 mm Cage Arm for Cerna Focusing StageThorlabsCSA2100securely mount and position condensers
Snap on Cage Cover for 60 mm Cage, 24 in Long,ThorlabsC60L24enclose and protect the components inside the cage
Sodium dodecyl sulfateThermo Fischer ScientificJ63394.AKSelf-assembly component
Three-Chnnale Controller and Knob Box for 1" Cerna Travel StagesThorlabsMCM3001control ZFM2020
Tube lensThorlabsLA1380-AB - N-BK7SFG signal collection
Visible LED SetThorlabsWFA1010provide illumination in imaging setup
Whitelight SourceThorlabsWFA1010Whitelight illumination source for brightfield imaging
WPH05M-1030 - Ø1/2" Zero-Order Half-Wave Plate, Ø1" Mount, 1030 nm ThorlabsWPH05M-1030alter the polarization state of light passing through it
WPLQ05M-3500 - Ø1/2" Mounted Low-Order Quarter-Wave Plate, 3.5 µm ThorlabsWPLQ05M-3500alter the polarization state of light passing through it
X axis Long Travel Steel Extended Contact Slide StagesOptosigmaTSD-65122CUUpositioning stages that offer extended travel in the horizontal (X) direction
XT95 4in Rail CarrierThorlabsXT95RC4mount and position optical components
X-Y Axis Translation Stage w/ 360 deg. RotationThorlabsXYR1precise movement and positioning of objects in two dimensions, along with the ability to rotate the platform
XY(1/2") Linear Translator with Central SM1 Thru HoleThorlabsXYT1provide precise movement and positioning in two dimensions
Yb doped Solid State LaserLight ConversionCB3-40WSeed laser
β-CyclodextrinThermo Fischer ScientificJ63161.22Self-assembly component

Referências

  1. Zhu, X. D., Suhr, H., Shen, Y. R. Surface vibrational spectroscopy by infrared-visible sum frequency generation. Physical Review B. 35 (6), 3047-3050 (1987).
  2. Shen, Y. R. Surface properties probed by se....

Reimpressões e Permissões

Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE

Solicitar Permissão

Explore Mais Artigos

Qu micaimagem infravermelhaptica n o linearestrutura propriedadeauto montagemgera o de soma de frequ ncia vibracionalmicroscopia de gera o de soma de frequ nciaimagem hiperespectralcaracteriza o de materiaisorganiza o hier rquica

This article has been published

Video Coming Soon

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados