JoVE Logo

Войдите в систему

Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.

В этой статье

  • Резюме
  • Аннотация
  • Введение
  • протокол
  • Результаты
  • Обсуждение
  • Раскрытие информации
  • Благодарности
  • Материалы
  • Ссылки
  • Перепечатки и разрешения

Резюме

Темпы роста сотового является регулируемым процессом и основным фактором, определяющим физиологии клетки. Непрерывное культивирование с использованием Хемостаты позволяет внешнюю контроль скорости роста клеток на ограничение питательных веществ облегчая изучение молекулярных сетей, которые контролируют рост клеток и как эти сети развиваются оптимизировать рост клеток.

Аннотация

Клетки регулировать их скорость роста в ответ на сигналы из внешнего мира. Как клетка растет, различные клеточные процессы должны быть скоординированы в том числе синтеза макромолекул, обмена веществ и в конечном итоге, приверженность цикла клеточного деления. Хемостат, способ управления экспериментально скорость роста клеток, обеспечивает мощное средство систематически изучает, как влияет на скорость роста клеточных процессов - в том числе генной экспрессии и метаболизм - и регуляторных сетей, которые контролируют скорость роста клеток. Когда сохраняется в течение сотен поколений Хемостаты может быть использован для изучения адаптивной эволюции микробов в условиях окружающей среды, которые ограничивают рост клеток. Опишем принцип хемостата культур, продемонстрировать свою работу и привести примеры их различных приложений. После периода употребления после их введения в середине двадцатого века, сходимость геном масштаба методологий с возобновлено втерес в регуляции роста клеток и молекулярных основ адаптивной эволюции стимулирует возрождение в использовании Хемостаты в биологических исследований.

Введение

Рост клеток регулируется сложных сетей взаимодействующих генетических и экологических факторов 1,2. Многофакторное регулирование роста клеток вызывает необходимость системного уровня подхода к его изучению. Тем не менее, строгое изучение регулируемого роста клеток встает трудность экспериментально контролировать скорость, с которой клетки растут. Более того, даже в простейших экспериментов внеклеточных условия часто динамичный и сложный, как клетки непрерывно изменять свое окружение, как они размножаются. Решение этих проблем обеспечивается хемостате: метод культивирования клеток, что позволяет экспериментально контроль темпов роста клеток в определенных, инвариантных и контролируемых условиях.

Метод непрерывного культивирования с использованием хемостата была независимо описывается Моно 3 и Новик & Сцилардом 4 в 1950 году. Как первоначально задумано, клетки выращивают в фиксированном объеме массовой информации, что является конtinually разбавляют добавлением новых медиа и одновременным удалением старых СМИ и клеток (рис. 1). Связанные обыкновенные дифференциальные уравнения (рис. 2) описывают скорость изменения плотности клеток (х) и концентрации роста ограничения питательных веществ (ы) в хемостатной судна. Важно отметить, что эта система уравнений предсказывает один (ненулевое) стабильное стационарное (рис. 3) с замечательной подразумевается, что в стационарном состоянии, удельная скорость роста клеток (то есть постоянных экспоненциальный рост) равна скорости при которой культура разбавляют (D). Изменяя степень разбавления можно установить стационарные популяции клеток с различной скоростью роста и при различных условиях ограничение питательных веществ.

Экспериментальная контроль скорости роста, используя Хемостаты имеет решающее значение для развития понимания того, как изменения физиологии клеткис темпами 5,6 роста. Тем не менее, этот бывший оплотом микробиологических методов становится все более неясным во время взрыва в молекулярной биологии исследований во время конца ХХ века. Сегодня, возрождение интереса к контролю роста в обоих микробов и многоклеточных организмов и появлением методов геном масштаба для анализа системы уровня возобновил мотивацию для использования Хемостаты. Здесь мы описываем три приложения, которые капитализировать на точный контроль темпов роста клеток и внешней средой, которые однозначно можно с помощью Хемостаты. Во-первых, мы описываем использование Хемостаты расследовать, как обилие тысяч биомолекул - например, стенограммы и метаболитов - согласованно регулируются с темпом роста. Во-вторых, мы опишем, как Хемостаты может быть использована для получения точных оценок различий роста ставок между разными генотипами в питательными веществами ограничиваются средами с помощью конкуренции эксперименты. В-третьих, мы опишем, как Хемостаты можетбыть использованы для изучения адаптивной эволюции клеток, растущих в постоянных бедных питательными веществами средах. Эти примеры иллюстрируют, каким образом Хемостаты включаете системы на уровне исследования регуляции роста клеток, геном по окружающей средой и адаптивной эволюции.

протокол

Принцип непрерывного культивирования с использованием хемостате могут быть реализованы в различных реализациях. Во всех Хемостаты важно иметь 1) методы для сохранения стерильности всех компонентов, 2) хорошо смешанная культура, 3) необходимости аэрации сосуда для культивирования и 4) надежным средством массовой информации добавления и удаления культуры. Здесь мы описываем использование биореакторе Sixfors (Infors Inc) в качестве хемостате используя методы, которые могут быть легко адаптированы к альтернативным установок.

1. Сборка сосуды хемостате

  1. Включите Sixfors с помощью главного выключателя.
  2. Тщательно промойте хемостате судно, мешалки сборку, и придает трубки с деионизированной (ДИ) водой. Проверьте все трубки и уплотнительные кольца и заменить изношенные глядя штук.
  3. Убедитесь, что базовая опора приводного вала обращена вверх в стеклянный сосуд и что в верхней части приводного вала защелкивается в корпус на мешалкой сборки. Установите stirreR сборка в стеклянный сосуд, обеспечивающего нижнюю часть приводного вала посажен на опору приводного вала. Используйте держатель для крепления мешалки сборку в стеклянном сосуде.
  4. Заполнить емкость около 300 мл дистиллированной воды.
  5. Снимите колпачки от растворенного кислорода (DO 2) зонда и проверьте уровень электролита, открутив нижний кожух и убедившись, что нижний кожух заполнен наполовину раствором электролита. Rescrew нижний кожух и вставить в порт на хемостатной судна. Заверните до затяжке.
  6. Возьмите рН электрод и удалить его из своего буфера хранения (3 М KCl). Снимите крышку датчика рН и приложить к ферментер 1. Использование экрана управления Sixfors, перейдите в меню параметров ферментер и выберите пункт "калибровки рН". Поместите рН электрод в стандартный рН 7 буфера и записи чтения в качестве Верховного прочитанными. Повторите с рН 4 буфера и записи чтения как низкий прочитанными. Снять рН электрод из ферментера, промойте дистиллированной водой и вставить зонд Intо порт на хемостатной судна. Заверните до затяжке.
  7. Поместите хемостате судно в стойке. Примечание на судне, которое ферментер (1-6) рН зонд, подключенный к и калиброванного. Поместить зонд колпачок рН от рН зонда. Использование фольги плотно охватывают верхнюю часть сделать 2 зонда.
  8. Сгиб фольги на концы трубки, прикрепленной к хемостатной судна.
  9. Повторите шаги 1.2-1.8 для всех судов.
  10. Стерилизуют автоклавированием сосуды их в течение 15 мин на жидком цикла.

2. Подготовка СМИ

  1. Установите предельную диапазон концентраций для питательного вещества путем выращивания пакетных культур в различных концентрациях питательных. Питательная ограничивает в области, где конечный плотность клеток является линейной функцией от начальной концентрации питательных веществ (рис. 4). Выберите концентрацию питательных веществ в пределах предельной диапазоне. Примеры стандартного состава медиа для исследований с Saccharomyceс CEREVISIAE доступны в 7-11.
  2. Автоклав пустую бутыль, который закрывают резиновой пробкой, содержащей входа и выхода воздуха медиа после первого обеспечение, что конец носителя трубки покрыта фольгой.
  3. В отдельном сосуде приготовить 10 л массовой информации.
  4. Прикрепите 500 мл фильтра чашку к бутылке 100 мл СМИ. Снимите ватным фильтр пинцетом стерилизованных в этаноле и сразу приложить к порту фильтрации на медиа-бутыли.
  5. Прикрепите СМИ бутыль с источником вакуума и фильтр стерилизовать СМИ, добавив его в чашке фильтра.
  6. При фильтрации СМИ завершена, закрыть порт фильтрации с металлическим зажимом.

3. Калибровка сделать 2 Зонды и настройка хемостате

  1. После Хемостат суда были в автоклаве и дать ему остыть место судна в соответствующем тепла куртки. Подключите датчик температуры, рН зонд, и сделать 2 зонда. ПустьСудно сидеть с властью в течение по крайней мере 6 часов, чтобы позволить сделать 2 зонда для поляризации.
  2. Поместите конец каждого отходящего трубки в отдельный приемный сосуд. Подключите подачу воздуха через автоклавного фильтра и включите воздушного потока. Вода в каждом сосуде должно вытекать из сточных труб, который указывает, что все уплотнители правильно сформирован.
  3. Отрегулировать высоту отходящего трубки в соответствии с желаемым рабочим объемом (например, 300 мл). Мы используем линейку, помеченный с трубкой размещения калиброванных в разных объемов работы.
  4. Подключите медиа бутыль с хемостатной судна. Использование этанола, чтобы сохранить концов труб максимальную стерильность. Автор трубку насоса через насос и открытого зажима. Вручную нажмите насос, пока носитель не начнет поступать в хемостате судна. Отпустите трубки от насоса, СМИ должны свободно проходить в хемостатной судна. Когда средства массовой информации достигает стоков трубку, снова трубку, чтобы накачать и зажать.
  5. Начните Running основную программу с приводным колесом набора до 400 оборотов в минуту и ​​температурой, установленной при 30 ° С
  6. Для калибровки сделать 2 зондов, выключить подачу воздуха и перейти к газообразным азотом. Подождите, по крайней мере, один час и значение меры записи как "низкой чтения". Вернитесь к подачи воздуха (то есть содержащего концентрацию кислорода окружающего), подождите не менее одного дополнительного часа и измерения рекордно как "высокой чтения".
  7. Инициировать запись данных с помощью программного обеспечения Iris.

4. Прививка

  1. С помощью 70% этанола стерилизовать в верхней части сосуда для культивирования.
  2. Удалить винт на судне верхней и пипетки 1 мл ночной культуры в хемостатной судна. Подтянуть винт.
  3. Укажите время прививки в Iris.
  4. Подождите примерно 24 ч для культур как можно скорее достичь стационарной фазы. По мере роста культуры, растворенный кислород и рН будет уменьшаться. В случае глюкозо-ограничения информации, растворенный кислород вернется к ~ 100% в стационарном ФГАсебе. Для других ограничений питательных растворенного кислорода останется <100% в неподвижной фазы.

5. Инициирование Насосы и Достижение стабильного состояния

  1. Степень разбавления рассчитывается путем деления расхода (сколько медиа-потоков в сосуд в час) от объема культуры. Например, при использовании объем 300 мл степень разбавления 0,1 означает, что 30 мл среды добавл ют к культуре каждый час. Поскольку система находится под положительным давлением такой же объем удаляется из емкости, обеспечивая, что культура непрерывно разбавляют. Диапазон скоростей разбавления (D) могут быть использованы, что не превышает максимальную скорость роста макс) клеток, при превышении которого клетки будут вымываться из хемостате.
  2. Выберите установки помпы, которые определяют количество секунд насос и выключается, чтобы установить желаемый расход. Насос подает носитель со скоростью ~ 0,11 мл / сек.
  3. Определить программу, используя Int Sixforserface, указывающее насоса времени, температуры и скорости крыльчатки. Запустите программу.
  4. Высыпать сбор сосуды жидкости и записывать время.
  5. После по крайней мере двух часов, используя градуированный цилиндр определить, сколько медиа был удален из сосуда. Это будет равняться объем, который был добавлен к хемостатной судна. Рассчитайте степень разбавления (D = V стоков / V культура / времени). Настройка параметров насоса, если рассчитывается степень разбавления не соответствует желаемой степени разбавления.
  6. В устойчивом состоянии, плотность клеток в хемостате не меняется с течением времени. Это может быть измерена без нарушения культуру путем отбора проб отток. Мы оперативно определить достижение устойчивого состояния как идентичные измерения плотности клеток, разделенных по меньшей мере одним удвоением населения. Достижение устойчивого состояния займет примерно восемь культуры поколений после начала разведения культуры. В устойчивом состоянии, клетки растут в геометрической прогрессии (т.е.э. константа скорости роста в течение долгого времени) в питательных ограниченной условиях. Время удвоения населения (времени поколения) п (2) / D.
  7. Продолжайте периодически измерять объем жидких отходов в течение всего срока эксперимента, чтобы обеспечить постоянный уровень разбавления сохраняется.

6. Применение 1: Изучение клеток, растущих с разной скоростью в стационарных условиях

  1. В устойчивом состоянии в хемостате, темпы роста популяции клеток равна скорости разбавления. Систематически изменения скорости разбавления можно вырастить клетки с разной скоростью. Это позволяет систематическое изучение физиологических параметров, которые изменяются с темпом роста в том числе объема клеток, стадии клеточного цикла и стрессоустойчивости. Кроме того, стационарные профили глобальной мРНК, белка и уровней метаболитов может проводиться в клетки, растущие с разной скоростью. Есть два способа приобрести образцы:
  2. Небольшие образцы могут быть пассивно-обtained, поместив конец трубки сточных вод в 1,5 мл или 15 мл пробирку. Образец 1-5 мл может быть получена в течение нескольких минут (в зависимости от скорости потока). Многие физиологические параметры могут быть измерены из этих образцов.
  3. Экспрессия гена, или метаболит анализы требуют больших образцов, которые должны быть получены как можно быстрее. Поместите конец трубки отходящего в 15 мл коническую пробирку. Отпустите винт, удерживающий конец металла отходящего трубки и надавите аккуратно. ~ 10 образец мл будет быстро заполнить ваш трубку. Имейте в виду, что объем в хемостатной судна изменилось. Если множество последовательных берутся образцы может быть необходимо, чтобы уменьшить поток для поддержания постоянной степени разбавления.

7. Применение 2: точное измерение различия в темпах роста между генотипами в контролируемой среде Использование конкурентных анализах проточной цитометрии на основе

  1. Хемостаты может быть использован для точного количественного определения влияния концентрации питательных веществна различия в темпах роста (т.е. фитнес) между различными генетическими происхождения. С совместно культивируемыми штаммами, меченных флуоресцентными белками разных скорость изменения относительного содержания в течение экспоненциального роста определяется. Выполнение этого теста с разной скоростью разбавления (D) позволяет изучение последствий концентрации питательных веществ (ов) на фитнес различий.
  2. Создание устойчивого состояния культур двух штаммов в отдельных хемостата судов с одинаковой скоростью разбавления и объемом 300 мл.
  3. Пассивно образец 1 мл из каждого судна. Спин вниз клетки, ресуспендируют в фосфатно-солевом буфере (PBS) и место при 4 ° С. Эти образцы содержат образцы однородных клеток, которые элементы управления для последующего анализа потока цитометрии.
  4. Поместите стоков трубку из одного сосуда в автоклавного мерный цилиндр. Отпустите винт, удерживающий конец металла отходящего трубки и осторожно надавите изгнать клетки от хемостате. Когдаобъем достигает 150 мл, возвращают конец металла отходящего пробирку в исходное положение (300 мл). Повторите со второй сосуд, используя другой градуированный цилиндр.
  5. С помощью 70% этанола, чтобы поддерживать стерильность при удалении винта на верхней части хемостатной судна. Поместите воронку в отверстие и залить 150 мл из другой культуры в хемостатной судна. Подтянуть винт. Повторите со второй сосуд, используя вторую воронку. Каждый сосуд хемостатическую теперь содержит смесь двух штаммов.
  6. Получение отсчета в 1 мл от каждого судна, используя пассивный отбор проб каждый 2-6 часа. Спином вниз клетки, ресуспендируют в PBS и хранить при температуре 4 ° C. Продолжить проб для 2-3 дня тщательно записывая время каждый образец был взят.
  7. В конце эксперимента, ультразвуком и разбавить образцы в ~ 2 х 10 6 клеток / мл. Использование проточной цитометрии, измерения доли двух штаммов в каждом образце. Как оба штамма растет в геометрической прогрессии, разница относительная скорость ростаопределяется линейной регрессии LN (strain1/strain2) против времени (измеряется в поколениях). Наклон линии регрессии является пропорциональным разница в скорости роста (т.е. тренажерном преимущество) одного штамма по отношению к другой.
  8. Как смешанная культура может занять некоторое время, чтобы достичь нового устойчивого состояния, точки в начале времени могут поместиться плохо к регрессу. Этот вопрос лучше решить, позволяя 2-3 поколений должно пройти, прежде чем начать отбор проб или удаления ранние моменты, которые ясны выбросы. не наоборот, как только один штамм вытеснить другой данные больше не полезно и эти точки должны быть исключены.

8. Применение 3: Экспериментальная Эволюция

  1. Экспериментальная эволюция осуществляется в Хемостаты выбирает для мутантов, которые увеличились фитнесом в питательной стесненных условиях. Выбор, как правило, выполняется в течение сотен поколений.
  2. Установите хемостате культуру стационарное используя штаммизвестного генотипа (и желательно известной последовательности генома) и определяется питательными веществами ограничение.
  3. Для поддержания "окаменелостей" населения адаптирующихся пассивно попробовать хемостата каждые 2-3 дня и хранить образцы в 15% глицерине при -80 ° С.
  4. Мониторинг СМИ резервуар и пополнить свежими СМИ по мере необходимости.
  5. Поддерживать экспоненциально растущей культуры в течение нескольких сотен поколений.
  6. После завершения выбора пластины образец клеток на твердых агаровых чашках. После клетки выросли в колонии, выбрать объективную образец колоний с использованием зубочистки и инокуляции клонов на отдельные лунки 96-луночного планшета, содержащего 100 мкл сред. Разрешить клональные образцы расти в одночасье, добавить 100 мкл 30% глицерина и хранить в -80 ° С
  7. Охарактеризовать клонов по всей секвенирования генома и выполнения фенотипические анализы, включая оценку пригодности, используя общий дневно с надписью опорного напряжения, как описано в Приложения № 2.

Результаты

Основным преимуществом Хемостаты является возможность контролировать скорость роста клеток экспериментально путем изменения степени разбавления. В почкующихся дрожжей, Saccharomyces CEREVISIAE, морфология клетки является информативным его фазы цикла клеточного деления. Популяции с более выс?...

Обсуждение

Хемостаты включить культивирование микробов в рост контролируемых условиях стационарных. Клетки растут непрерывно с постоянной скоростью, в результате чего инвариантной внешней среды. Это в отличие от способов периодической культуре, в которой внешняя среда постоянно меняется, а ск?...

Раскрытие информации

Авторы заявляют, что они не имеют конкурирующие финансовые интересы.

Благодарности

Эта работа была поддержана запуска средства университета Нью-Йорка. Мы благодарим Майтрейя Данэм и Мэтт Брауэра, которые изначально разработанный использование Sixfors биореакторов как Хемостаты.

Материалы

NameCompanyCatalog NumberComments
Infors-HT Sixfors ChemostatAppropriate Technical Resources, Inc. 
Glass Bottle 9.5 LFisher Scientific02-887-1For Media Vessel and Hosing
PinchcockFisher Scientific05-867For Media Vessel and Hosing
Stopper, Size 12, Green NeopreneCole-PalmerEW-62991-42For Media Vessel and Hosing
Straight ConnectorCole-PalmerEW-30703-02For Media Vessel and Hosing
General purpose ties 4 inFisher ScientificNC9557052For Media Vessel and Hosing
Tubing, Silicone RubberSmall PartsB000FMWTDEFor Media Vessel and Hosing
Tubing, Silicone, 3/8 in ODFisher Scientific02-587-1QFor Media Vessel and Hosing
Tubing, Silicone, 7/32 in ODFisher Scientific02-587-1EFor Media Vessel and Hosing
Tubing, Stainless Steel, 3/16 in ODMcMaster-Carr6100K164For Media Vessel and Hosing
Tubing, Stainless Steel, 3/8 in ODMcMaster-Carr6100K161For Media Vessel and Hosing
Hook ConnectorsFisher Scientific14-66-18QFor Media Vessel and Hosing
Ratchet ClampCole-PalmerEW-06403-11For Media Vessel and Hosing
Luer, FemaleCole-PalmerEW-45512-34For Media Vessel and Hosing
Luer, MaleCole-PalmerEW-45513-04For Media Vessel and Hosing
Millipore Aervent MTGR05010 62 mm Filter, 0.2 μmFisher ScientificMTGR05010For Media Vessel and Hosing
PTFE Acrodisc CR 13 mm filters, 0.2 μmFisher ScientificNC9131037For Media Vessel and Hosing
Direct-Reading Flowtube for AirCole-PalmerEW-32047-77For Nitrogen Gas Setup
Direct-Reading Flowtube for NitrogenCole-PalmerEW-32048-63For Nitrogen Gas Setup
Gas Proportioner Multitube FramesCole-PalmerEW-03218-50For Nitrogen Gas Setup
Regulator, Two-Stage AnalyticalAirgasY12-N145D580For Nitrogen Gas Setup
Hose Adaptor, Stainless SteelAirgasY99-26450For Nitrogen Gas Setup
Hose Male AdaptorAirgasWES544For Nitrogen Gas Setup
Norprene TubingUS Plastics57280For Nitrogen Gas Setup
Tripod BaseCole-PalmerEW-03218-58For Nitrogen Gas Setup
Valve CartridgesCole-PalmerEW-03217-92For Nitrogen Gas Setup
Carboy 10 LFisher Scientific02-963-2AFor Media Preperation
Steritop Sterile Vacuum Bottle-Top Filters, 1,000 ml, PES membrane; for 45 mm neck sizeFisher ScientificSCGP-T10-REFor Media Preperation
Media Bottle 100 ml, 45 mm neck sizeFisher ScientificFB-800-100For Media Preperation
calcium chloride·2H2OFisher ScientificC79-500Media Reagents
sodium chlorideFisher ScientificBP358-1Media Reagents
magnesium sulfate·7H2OSigma Aldrich230391Media Reagents
potassium phosphate monobasicFisher ScientificAC424205000Media Reagents
ammonium sulfateFisher ScientificAC423400010Media Reagents
potassium chlorideSigma AldrichP9541Media Reagents
boric acidSigma AldrichB6768Media Reagents
copper sulfate·5H2OSigma Aldrich209198Media Reagents
potassium iodideSigma Aldrich60400Media Reagents
ferric chloride·6H2OFisher ScientificI88-100Media Reagents
manganese sulfate·H2OSigma Aldrich230391Media Reagents
sodium molybdate·2H2OSigma AldrichM7634Media Reagents
zinc sulfate·7H2OFisher ScientificZ68-500Media Reagents
biotinFisher ScientificBP232-1Media Reagents
calcium pantothenateFisher ScientificAC24330-1000Media Reagents
folic acidSigma AldrichF7876Media Reagents
inositol (aka myo-inositol)Fisher ScientificAC12226-1000Media Reagents
niacin (aka nicotinic acid)Sigma AldrichN4126Media Reagents
p-aminobenzoic acidFisher ScientificAC14621-2500Media Reagents
pyridoxine HClSigma AldrichP9755Media Reagents
riboflavinSigma AldrichR4500-25GMedia Reagents
thiamine HClFisher ScientificBP892-100Media Reagents
LeucineSigma AldrichL8000-100GMedia Reagents
UracilSigma AldrichU0750Media Reagents
DextroseFisher ScientificDF0155-08-5Media Reagents

Ссылки

  1. Ingraham, J. L., Maaloe, O., Neidhardt, F. C. . Growth of the Bacterial Cell. , (1983).
  2. Hall, M. N., Raff, M. C., Thomas, G. . Cell Growth: Control of Cell Size. , (2004).
  3. Monod, J. La technique de culture continue, theorie et applications. Ann. Inst. Pasteur. 79, 390-410 (1950).
  4. Novick, A., Szilard, L. Description of the chemostat. Science. 112, 715-716 (1950).
  5. Kjeldgaard, N. O., Maaloe, O., Schaechter, M. The transition between different physiological states during balanced growth of Salmonella typhimurium. J. Gen. Microbiol. 19, 607-616 (1958).
  6. Maaloe, O., Kjeldgaard, N. O. Control of macromolecular synthesis. , (1966).
  7. Saldanha, A. J., Brauer, M. J., Botstein, D. Nutritional Homeostasis in Batch and Steady-State. Culture of Yeast. Mol. Biol. Cell. 15, 4089-4104 (2004).
  8. Boer, V. M., Crutchfield, C. A., Bradley, P. H., Botstein, D., Rabinowitz, J. D. Growth-limiting intracellular metabolites in yeast growing under diverse nutrient limitations. Mol. Biol. Cell. 21, 198-211 (2010).
  9. Boer, V. M., de Winde, J. H., Pronk, J. T., Piper, M. D. The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur. J. Biol. Chem. 278, 3265-3274 (2003).
  10. Brauer, M. J., et al. Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast. Mol. Biol. Cell. 19, 352-367 (2008).
  11. Gresham, D., et al. Adaptation to diverse nitrogen-limited environments by deletion or extrachromosomal element formation of the GAP1 locus. Proc. Natl. Acad. Sci. U.S.A. 107, 18551-18556 (2010).
  12. Regenberg, B., et al. Growth-rate regulated genes have profound impact on interpretation of transcriptome profiling in Saccharomyces cerevisiae. Genome Biol. 7, R107 (2006).
  13. Castrillo, J. I., et al. Growth control of the eukaryote cell: a systems biology study in yeast. J. Biol. 6, 4 (2007).
  14. Cipollina, C., et al. Revisiting the role of yeast Sfp1 in ribosome biogenesis and cell size control: a chemostat study. Microbiology. 154, 337-346 (2008).
  15. Gresham, D., et al. System-level analysis of genes and functions affecting survival during nutrient starvation in Saccharomyces cerevisiae. Genetics. 187, 299-317 (2011).
  16. Levy, S. F., Ziv, N., Siegal, M. L. Bet hedging in yeast by heterogeneous, age-correlated expression of a stress protectant. PLoS Biol. 10, e1001325 (2012).
  17. Kao, K. C., Sherlock, G. Molecular characterization of clonal interference during adaptive evolution in asexual populations of Saccharomyces cerevisiae. Nat. Genet. 40, 1499-1504 (2008).
  18. Gresham, D., et al. The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast. PLoS Genet. 4, e1000303 (2008).
  19. Wenger, J. W., et al. Hunger Artists: Yeast Adapted to Carbon Limitation Show Trade-Offs under Carbon Sufficiency. PLoS Genet. 7, e1002202 (2011).
  20. Dunham, M. J., et al. Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 99, 16144-16149 (2002).
  21. Ronen, M., Botstein, D. Transcriptional response of steady-state yeast cultures to transient perturbations in carbon source. Proc. Natl. Acad. Sci. U.S.A. 103, 389-394 (2006).
  22. Kresnowati, M. T. A. P., et al. When transcriptome meets metabolome: fast cellular responses of yeast to sudden relief of glucose limitation. Mol. Sys. Biol. 2, 49 (2006).
  23. Tu, B. P., Kudlicki, A., Rowicka, M., McKnight, S. L. Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science. 310, 1152-1158 (2005).
  24. Tzur, A., Kafri, R., LeBleu, V. S., Lahav, G., Kirschner, M. W. Cell Growth and Size Homeostasis in Proliferating Animal Cells. Science. 325, 167-171 (2009).
  25. Conlon, I., Raff, M. Size control in animal development. Cell. 96, 235-244 (1999).
  26. Conlon, I. J., Dunn, G. A., Mudge, A. W., Raff, M. C. Extracellular control of cell size. Nat. Cell Biol. 3, 918-921 (2001).
  27. Fussmann, G. F., Ellner, S. P., Shertzer, K. W., Hairston, N. G. Crossing the hopf bifurcation in a live predator-prey system. Science. 290, 1358-1360 (2000).
  28. Cohen, E. P., Eagle, H. A simplified chemostat for the growth of mammalian cells: characteristics of cell growth in continuous culture. J. Exp. Med. 113, 467-474 (1961).

Перепечатки и разрешения

Запросить разрешение на использование текста или рисунков этого JoVE статьи

Запросить разрешение

Смотреть дополнительные статьи

80Saccharomyces CEREVISIAE

This article has been published

Video Coming Soon

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены