Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.
Method Article
Мы разработали метод для недорогих и быстрого прототипирования жидких эластомер резина литья под давлением устройств с помощью слитые осаждения моделирование 3D-принтеры для проектирования пресс-форм и модифицированной эксикаторе как жидкостной системой впрыска.
Биологически инертные эластомеры, такие как силикон благоприятные материалы для изготовления медицинских приборов, но формирования и лечения этих эластомеров с использованием традиционных процессов литья под давлением жидкость может быть дорогостоящий процесс из-за оснастки и расходы на оборудование. В результате, это традиционно непрактично использовать жидкий литья под давлением на недорогие, быстрые приложений прототипов. Мы разработали метод для быстрого и дешевого производства жидких инъекционных эластомер формованных устройств, которая использует конденсированных осаждения моделирование 3D-принтеры для проектирования пресс-форм и модифицированной эксикаторе как системы впрыска. Низкие затраты и быстрое время выполнения заказа в этой технике снизить барьер для многократного проектирования и прототипирования сложных эластомеров устройств. Кроме того, модели CAD, разработанные в этом процессе может быть позже адаптирована для дизайна металлическую форму оснастки, что позволяет легкий переход к традиционным способом литья под давлением. Мы использовали эту технику для производства intravagИнал зонды с участием сложную геометрию, а также формованием над металлическими частями, используя инструменты общедоступных течение учебного научно-исследовательской лаборатории. Однако этот метод может быть легко адаптирована для создания жидких литьевым формованием устройства для многих других приложений.
Жидкость литья под давлением (LIM) (также известный как инъекции реакция литья) часто используется для изготовления эластомерных устройства от термореактивных эластомеров, но высокая оснастки и затраты на оборудование требует много авансовые капитальных вложений 1. Кроме того, LIM может быть технически сложным и дорогостоящим для реализации в случаях со сложной геометрией и требования к формовании. В результате, это, как правило нецелесообразно использовать традиционные LIM в ультра-низких объемах или с конструкциями устройств на ранней стадии, что часто несут итерационные изменения.
Типичная процедура литьевых эластомерных материалов предполагает введение жидких мономеров при давлениях около 150 фунтов на квадратный дюйм в форму с помощью специализированного формования оборудования 2. Температура и давление контролируется, чтобы обеспечить ламинарный поток и избежать проникновения воздуха оказаться в ловушке в форме 3. Сырье, как правило, из двух частей системы отверждения, такие как платина вылечить силиконовой, тшляпа хранятся в отдельных и температуры контролируемых камер перед инъекцией. Оба компонента сырья закачивают в смесительной камере высокого давления, которые впоследствии подает в полость формы. Отверждение достигается присутствии катализатора, а также температуры около 150-200 ° C 4. Пресс-формы, как правило, изготовлены из стали или алюминия с точными допусками, чтобы создать хорошее уплотнение вокруг расставания кромки 3,5. К сожалению, этот процесс, как правило, больше подходит для больших масштабах производства данных высокого плесени затрат на инструменты, а также требования в отношении специализированных инъекций и управления с обратной связью систем.
Для быстрого прототипирования полиуретана (PU) частей, можно использовать стереолитографии (SLA) для создания мастер плесени и произвести кремниевой резины 6,7. Однако этот способ не подходит для напрессовки поскольку трудно добиться точного выравнивания на подложку компонентов, как силикон, поконструкции, не жесткую структуру. Кроме того, производство приборов со сложной геометрией, таких как инвагинаций или выдолбленные секциях, трудно или невозможно. Требование сложных или точных пресс-форм линий разъема и жестких тонких элементов чаще всего, несовместимы с процессом жидкой резины под давлением.
Вышеупомянутые производство масштаба или поздней стадии прототипирования процессы зачастую непрактично для ранней стадии развития медицинского оборудования, в котором несколько устройств должны быть подготовлены для доказательства правильности концепции и возможности в исследованиях на людях, как это часто бывает в академической лаборатории и запуск среды компании. Отсутствие альтернатив часто означает, что даже развитие на ранней стадии будет нести высокие затраты, требуя многих разработчиков устройств для ограничения функциональности устройства или поставить развитие на удержание в то время как дополнительные средства привлекаются. Это способствует резкому замедлению процесса развития, поскольку большой части медицинского оборудования повторно Реализация десть сложных функций. Кроме того, трудно финансировать дорогостоящую разработку таких устройств, так как доказательство правильности концепции данные часто еще не установлена. Мы столкнулись с этой контрольно-пропускной пункт в недавнем проекта в этой лаборатории, в котором участвовали развитие силиконовой интравагинального зонда с на подложку электрических и оптических датчиков, которые требуют чаевые чашеподобную соответствовать заданными шейки геометрий. Процесс, описанный в этой статье документы нашу попытку обойти этот порочный круг и быстро достичь чек, подтверждающий факт концепции для LIM медицинского оборудования.
Техника показано на рисунке 1 деконструирует процесс LIM на 5 основных видов деятельности: (1) конструкция прессформы и производства, (2) формы сборки (3) смешивание эластомера, (4) для инъекций эластомер, и (5) эластомер отверждения и извлечения из формы.
пг "ширина =" 600 "/>
.. Рисунок 1 Протокол Обзор Обзор протокола, который предполагает: (1а) создание формы с использованием системы автоматизированного проектирования инструментов, (1b) 3D печати отливок, (2) обжимной пресс-формы части, используя резьбовых шпилек и винтов, ( 3) смешивание жидкого эластомера и загрузкой в шприц, (4) нагнетание жидкости эластомер в пресс-форму с помощью модифицированного эксикатор, (5а) отверждение эластомера в печи с контролируемой температурой, и (5b) извлечения из формы отвержденного эластомера устройство от пресс-формы штук.
Дизайн Плесень включает в себя разработку мастер формы в системе автоматизированного проектирования (САПР), вычитание мастера формы из твердого блока и определения линий разъема пресс-формы. Отливок создаются и затем собирают с помощью винтов, стержней и орехи с на подложку компонентов, расположенных в полости формы. Резина примесьг включает объединение частей А и В сырья и дегазации для удаления потенциальных пустот в материале. Далее, впрыск эластомер включает приводимые в действие давлением заполнение полости формы, а затем эластомера отверждения в печи с контролируемой температурой, чтобы обеспечить химическое сшивание полимерных цепей.
Ломая процесса литья под давлением в этих шагов позволяет отказаться традиционный LIM оборудование в пользу низких альтернатив затрат. Например, вместо обработки металлической формы или отливки форму из кремниевой резины от мастера формы, формы, созданные с протоколом, описанным в этой рукописи были созданы из акрилонитрил-бутадиен-стирола (АБС) пластика с использованием плавленого осаждения моделирование (FDM) 3D Принтер 8,9. По сравнению с строительных металлических форм или SLA форм, FDM, как правило, дешевле и быстрее процесс. Довольно сложные формы могут быть быстро распечатаны на в доме 3D-принтер, или дешево производятся одним из многих контракта 3D printinг-услуги можно получить. Например, сложный восемь частей 3D печатный пресс-формы была использована для приведения продемонстрировали интравагинального зонд в разделе результатов представительной и показано на фигурах 14 и 15. Все запчасти для этой плесени могут быть напечатаны в примерно 1,5 дней на в доме 3D-принтер. Раз поворот для более простых форм может быть несколько часов. Общая длина времени, необходимого для Прототип устройства с помощью FDM 3D принтеры для создания форм похож на время, необходимое, чтобы бросить форму из силиконовой резины и создать полиуретановый прототип. Однако, используя FDM 3D принтеры для создания форм позволяет в течение нескольких вещей, которые не могут быть легко выполнено с использованием силиконовые формы: (1) многие термореактивных эластомеров могут быть использованы при условии, что 3D-печатных плесень может терпеть необходимые Температуры отверждения, (2) сложные геометрические могут быть созданы с использованием различных частей пресс-формы и линий разъема, и (3) использование жестких отливок позволяет точно и воспроизводимостьBLE выравнивание на подложку компонентов в полость пресс-формы.
Вместо того чтобы использовать традиционные машины Лим, который сочетает в себе смешивание, инъекции, и отверждение, можно использовать лабораторный смеситель, чтобы обеспечить однородное смешивание, модифицированный эксикатор для инъекций, и стандартный контролируемой температурой печи для отверждения. Система впрыска была создана при помощи компонентов вне-полки и включает добавление положительного линии подачи давления в эксикаторе, который подключается к шприц со смешанным эластомера. Палата наддува в стендовых лучших эксикаторах обычно управляется трехходовым клапаном между камерами, вакуумной линии питания, и в атмосферу. Модифицированный эксикатор добавляет положительную линию подачи питающего напряжения к задней части поршень шприца. Это позволяет создавать разности давлений 40-50 фунтов на квадратный дюйм, что является достаточным для впрыска жидкости материала в полость пресс-формы.
Этот метод позволил нам произвосе силиконовые интравагинальные зонды с на подложку электрических и оптических датчиков для сбора доказательств правильности концепции данных для фазы I клинических испытаний. Силиконовые был выбран из-за необходимости биологической инертности, а также возможность стерилизации с различными методами 10,11. Кроме того, устройство требуется сложная и нетрадиционные чашеобразный геометрию на кончике зонда, где расположены датчики для взаимодействия с шейки матки. Без использования описанной методике, было бы гораздо дороже и длительный процесс для производства этих устройств. Эта адаптация процесса LIM снижает стоимость оборудования и требования по сравнению с традиционным процессом LIM, что делает его практическое принять быстрое и итеративный подход к разработке эластомерных устройств.
Этот протокол описывает использование специфической терминологии и особенности в программном обеспечении SolidWorks, используемого для Mold Design и этапов производства, хотя другие программные пакеты также могут быть использованы для достижения того же результата.
1. Плесень Дизайн и производство
Рисунок 2. 2D CAD Эскизы. A) 2D эскиз, которые могут быть радиально вращается вокруг оси Y. производить чашеобразный функцию, аналогичную той, на интравагинального измерительным устройством. B) каплевидные 2D эскиза, который может быть экструдирован из плоскости в призму- как структура, которая образует ручку интравагинального измерительным устройством. С) Пример эскиза, который создает два участка в радиальном сечении чашеобразного функции области формы. Вращались сокращения выборочно в Районе 1 или в Районе 2 вокруг оси Y. будет давать различные отливок.
oad/51745/51745fig3highres.jpg "ширина =" 500 "/>
Рисунок 3. Создание Mold в САПР. Чертежей САПР мастера формы (справа) и пресс-форм негатива (слева) для влагалищном измерительным устройством изображен. Пресс-форма создается отрицательное путем вычитания формы мастер геометрию из прямоугольной призмы и, в конечном счете быть разделена на две или более частей и стать функциональный плесени.
Рисунок 4. Проектирование Направляющие в форме. Разобранном CAD чертеж пресс-формы, волоконная оптика трубки, и электродных элементов. Волоконной оптики трубки и электроды должны быть точно установлены и формовать поверх производить внутривлагалищного зонд. Направляющие предназначены в пресс-форме, чтобы эти компоненты, чтобыоставаться на месте в то время как жидкость эластомер, введенного в полость пресс-формы.
. Рисунок 5 Плесень:. Разобранном виде в разобранном САПР чертеж готовой формы сборки для интравагинального измерительным устройством. Геометрия полости формы не только определяет внешние геометрии конечного интравагинального измерительным устройством, но и обеспечивает анкерные и позиционирования точки для компонентов, которые будут на подложку. В частности, пресс-формабаза геометрия и в левом верхнем углу и верхний правый штук выровнять волоконной оптики трубку, и плесень база обеспечивает вставки для выравнивания электроды на конечного устройства.
. Рисунок 6 Плесень:. Собранный Посмотреть САПР чертеж готовой формы сборки для интравагинального измерительным устройством. Жидкий эластомер будет выведена на воротах и заполнить полость формы перед впадением в сливной резервуар в верхней части. Вентиляционные отверстия, идущие от полости пресс-формы в сливном резервуаре тщательно разработаны в выравнивания частей пресс-формы в верхней части.
2. Формы сборки
Рисунок 7. Выравнивание на подложку компонентов. А) </ STRONG> Частично собраны формы с изображением выравнивание двух труб из нержавеющей стали, небольшой печатной плате и шесть электродов в полость пресс-формы. Позиционирование отливок в верхней части пресс-формы вместе с инвагинации в пресс-форме физически ограничить движение всех компонентов во время инъекции эластомера. B) увеличить вид нижней части выравнивания компонентов вблизи пресс-формы.
3. Инъекции палата
Рисунок 8. Резина впрыска Процесс. Анимация, что сначала изображает изменения в стандартной лабораторной сушилке, чтобы создать впрыска камеру, а затем изображает манипуляции давления, чтобы инъекционные жидкости эластомер из шприца в форму. Пожалуйста, нажмите здесь, чтобы посмотреть это видео.
Фиг.9 представляет собой схематический который описывает, как модифицировать эксикаторе, чтобы создать завершенное камеры впрыска.
Рисунок 9. CRесть камеры впрыска. Injection палату после модификации эксикатор завершена. Соответствующие шаги в процедуре помечены на рисунке.
См. рисунок 10С & 10D для камеры впрыска, используемого для изготовления внутривлагалищного зонд.
4. Резина Смешивание
Рисунок 10. Резина Смешивание и впрыска. A) После того как жидкость эластомер смешивают и дегазируют, поршень шприца вставлен в шприц. Воздух между плунжером и эластомера удаляется с помощью иглы шприца как плунжер вставлен. B) шприц с эластомера прикреплена к пресс-форме в воротах через Luer-Lock муфт. С) камеры впрыска представляет собой модифицированный эксикатор, который может генерировать по меньшей мере 40-50 фунтов на квадратный дюйм давления на поршень шприца с помощью вакуума и подачи положительного давления воздуха. D) пресс-формы после инжекции эластомера с использованием камеры впрыска.
5. Резина впрыска
Рисунок 11 резина для инъекций:.. Начиная камеры впрыска изображен в начале процесса впрыска жидкого каучука эластомера. Обе стороны поршень шприца подвергаются давлению окружающей среды.
Рисунок 12. РезинаРаствор для инъекций:. Ближний Закрытие 3-ходового клапана в нижней части установки уплотнения камеры впрыска и позволяет обе стороны поршень шприца потянуться к отрицательным давлением.
. Рисунок 13 резина для инъекций:Конец. Поворот 2-ходовым клапаном в верхней части установки позволяет применение положительного давления воздуха за поршень шприца, создавая по крайней мере 40-50 фунтов на квадратный дюйм.
6. Резина отверждения и извлечения отливки из формы
Форма и интравагинального зонд на рисунках 14 и 15 показано, репрезентативные результаты процедуры, представленной в этой статье.
Рисунок 14. Полностью Собранный...
Из всех шагов, описанных, конструкция формы является наиболее важным для успеха. Мастер формы должны быть созданы как твердое тело с внешними геометрий, равных конечного устройства. Эти геометрии должны быть скорректированы для учета любых усадки материала в связи с выбранной эластом?...
Ни один из авторов не имеют каких-либо конкурирующих финансовых интересов в отношении работы, подробно описанной в этой статье.
The authors thank Sungwon Lim for intellectual contributions to device and mold design as well as Jambu Jambulingam and Rebecca Grossman-Kahn for creating intravaginal silicone probes using this process. This work is supported by the Bill and Melinda Gates Foundation, the Vodafone Americas Foundation, and the FDA (2P50FD003793).
Name | Company | Catalog Number | Comments |
ABS Model Material | Stratasys | P430 | Model Material for uPrint Plus SE (Step: Mold Design & Production) |
Soluble Support Material | Stratasys | SR-30 | Support Material for uPrint Plus SE (Step: Mold Design & Production) |
Underwater Silicone Sealant, 2.8 Oz Tube, Clear | McMaster-Carr Supply Company | 7327A21 | Silicone RTV for sealing gaps at mold parting lines (Step: Mold Assembly) |
Tubing, 1/8" ID, 1/4" OD, 1/16" Wall Thickness, Ultra-chemical-resistant Tygon PVC, Clear | McMaster-Carr Supply Company | 5046K11 | Forms runner/sprue adapter between mold and syringe with elastomer (Step: Elastomer Mixing) |
Coupling, Adapter, Straight, Male Quick-turn (Luer lock) X 1/8" Tube Barb, Nylon | McMaster-Carr Supply Company | 51525K123 | Connect runner/sprue between mold and syringe with elastomer (Step: Elastomer Mixing) |
Coupling, Adapter, Staight, Female Quick-turn (Luer lock) X 1/8" Tube Barb, Nylon | McMaster-Carr Supply Company | 51525K213 | Connect runner/sprue between mold and syringe with elastomer (Step: Elastomer Mixing) |
Cap, Female Quick-turn (Luer lock), Nylon | McMaster-Carr Supply Company | 51525K315 | Cap to prevent silicone from leaking out of mold after injection (Step: Elastomer Mixing) |
Liquid Silicone Rubber (LSR) 30 - 10:1, Implant Grade | Applied Silicone Corporation | PN40029 | Substitute with the elastomer of your choice. This is the one used for the intravaginal probe (Step: Elastomer Mixing) |
Syringes (BD), 1 ml Slip-Tip, non-sterile clean, bulk | Cole-Parmer | WU-07945-00 | Syringes for transfering elastomer material (Step: Elastomer Mixing) |
Syringes (BD), 1 ml Slip-Tip, non-sterile clean, bulk | Cole-Parmer | WU-07945-04 | Syringes for transfering elastomer material (Step: Elastomer Mixing) |
Syringe, 20 ml, Open Bore, Solid Ring Plunger and Grip | Qosina Corporation | C1200 | Syringes for transfering elastomer material. Open bore is used for very viscous elastomers. (Step: Elastomer Mixing) |
Needle (BD), Non-sterile Clean with Shields, 18 G x 1.5" Lg., Stainless Steel, BD Bulk | Cole-Parmer | WU-07945-76 | Used for removing air column between syringe plunger and elastomer (Step: Elastomer Mixing) |
Plastic Cups, 12 Oz., Clear | Safeway | N/A | Used for mixing silicone in THINKY Mixer (Step: Elastomer Mixing) |
Polyethylene Bag, Open-Top, Flat, 5" Width x 6" Height, 2-MIL Thk. | McMaster-Carr Supply Company | 1928T68 | Used for mixing silicone in THINKY Mixer (Step: Elastomer Mixing) |
Rubber Band, Latex Free, Orange, Size 64, 3-1/2" L x 1/4" W | McMaster-Carr Supply Company | 12205T96 | Used for mixing silicone in THINKY Mixer (Step: Elastomer Mixing) |
Parafilm Wrap, 4" W | Cole-Parmer | EW-06720-40 | Used for mixing silicone in THINKY Mixer (Step: Elastomer Mixing) |
Syringe Barrels with Stoppers, Luer Lock, Air Operated, 50 ml | EWD Solutions | JEN-JG50A-15 | Smaller syringes can be used if less elastomer is required, but make sure it is compatible with Air Operated Syringe Adapter in injection chamber (Step: Elastomer Mixing) |
Sealant Tape, Pipe Thread, 50' Lg x 1/4" W, 0.0028" Thk, 0.5 G/CC Specific Gravity | McMaster-Carr Supply Company | 4591K11 | Teflon Tape for air-tight seals around at threads (Step: Elastomer Injection) |
Scalpel Blades, Disposable, No. 22 | VWR | 21909-646 | Used for cutting tubing and demolding (Step: Curing & Demolding) |
Kimwipes | VWR | 21903-005 | (Step: Curing & Demolding) |
2-Propanol, J. T. Baker | VWR | JT9334-3 | (Step: Curing & Demolding) |
uPrint Plus SE 3D Printer | Stratasys | uPrint Plus SE | Other 3D printers can be used (Step: Mold Design & Production) |
Screw, Cap, Hex Head, 1/4"-28 , 2-1/2" Lg, 18-8 Stainless Steel | McMaster-Carr Supply Company | 92198A115 | Screws used with nuts to compress mold (Step: Mold Assembly) |
Nut, Hex, 1/4"-28, 7/16" Wd, 7/32" Height, 18-8 Stainless Steel | McMaster-Carr Supply Company | 91845A105 | Screws used with nuts to compress mold (Step: Mold Assembly) |
Stud, Fully Threaded, 1/4"-28, 1" Lg, 18-8 Stainless Steel | McMaster-Carr Supply Company | 95412A567 | Threaded-rods can be cut to desired length and are used with nutes to compress mold (Step: Mold Assembly) |
Planetary Centrifugal Mixer | THINKY USA Inc. | ARE-310 | Mixers are strongly recommended for fine mixing and to reduce degassing time, but hand mixing is fine (Step: Elastomer Mixing) |
Laboratory Weigh Scale | Mettler-Toledo International Inc. | EL602 | (Step: Elastomer Mixing) |
Desiccant Vacuum Canister, Reusable, 10-3/4" OD | McMaster-Carr Supply Company | 2204K7 | This desiccator is used for degassing the elastomer (Step: Elastomer Mixing) |
Custom 3D-Printed Mixer-to-Cup Adapter | N/A | N/A | Modeled in Solidworks CAD and 3D printed (Step: Elastomer Mixing) |
Tubing, Smooth Bore, 1/4" ID, 1/2" OD, 1/8" Wall Thickness, High Purity Tygon PVC, Clear | McMaster-Carr Supply Company | 5624K51 | Tubing outside of Desiccator (Step: Elastomer Injection) |
Tubing, Smooth Bore, 3/8" ID, 5/8" OD, 1/8" Wall Thickness, High Purity Tygon PVC, Clear | McMaster-Carr Supply Company | 5624K52 | Tubing to adapt to Air/Vacuum Supply (Step: Elastomer Injection) |
Coupling, Reducer, Straight, Vacuum Barb 3/8" Tube ID X Vacuum Barb 1/4" Tube ID, Brass | McMaster-Carr Supply Company | 44555K188 | Adapt Tubing outside Desiccator to Tubing leading to Air/Vacuum Supply (Step: Elastomer Injection) |
Clamp, Hose & Tube, Worm-Drive, for 7/32" to 5/8" OD tube, 5/16" Wd., 316 SS | McMaster-Carr Supply Company | 5011T141 | Used on tubing to create Air/Vacuum-tight seal at junctions (Step: Elastomer Injection) |
Clamp, Hose, Smooth-Band Worm-Drive, for 1/2" to 3/4" OD tube, 3/8" Wd., 304 SS | McMaster-Carr Supply Company | 5574K13 | Used on tubing to create Air/Vacuum-tight seal at junctions (Step: Elastomer Injection) |
Coupling, Tee, Vacuum Barb 1/4" Tube ID, Brass | McMaster-Carr Supply Company | 44555K138 | Tee Junction between Vacuum, Three-way T-valve on Desiccator, and Three-way L-valve (Step: Elastomer Injection) |
Coupling, Tee, 1/4 NPT Female X Female X Male, Brass | McMaster-Carr Supply Company | 50785K222 | Tee Junction between Pressure Gauge, Chamber, and Three-way L-valve (Step: Elastomer Injection) |
Valve, Ball, Straight, T-Handle, 1/4 NPT Female X Male, Brass | McMaster-Carr Supply Company | 4082T42 | Three-way L-valve (Step: Elastomer Injection) |
Coupling, Adapter, Straight, Vacuum Barb 1/4" ID Tube X 1/4 NPT Male, Brass | McMaster-Carr Supply Company | 44555K132 | Adapter for Three-way L-valve-to-Tubing (Step: Elastomer Injection) |
Saw, Hole, Bimetal. 1-3/8" OD, 1-1/2" Cutting Depth | McMaster-Carr Supply Company | 4066A25 | Used to cut holes in Desiccator for throughwall fittings (Step: Elastomer Injection) |
Arbor, 9/16" to 1-3/16" Saw, 1/4" Hex | McMaster-Carr Supply Company | 4066A76 | Used to cut holes in Desiccator for throughwall fittings (Step: Elastomer Injection) |
Arbor Adapter for 1-1/4" Thru 6" Dia Hole Saws | McMaster-Carr Supply Company | 4066A77 | Used to cut holes in Desiccator for throughwall fittings (Step: Elastomer Injection) |
Coupling, Straight, Through-Wall, 1/2 NPT Female, Polypropylene | McMaster-Carr Supply Company | 36895K141 | Throughwall fittings leading to Pressure/Vacuum Gauges (Step: Elastomer Injection) |
Coupling, Adapter, Straight, Reducing, Bushing, Hex, 1/2 NPT Male X 1/4 NPT Female, Brass | McMaster-Carr Supply Company | 4429K422 | Reducing tube diameter inside the Desiccator to adapt to Air-operated Syringe System (Step: Elastomer Injection) |
Coupling, Adapter, Straight, Reducing, Bushing, Hex, 1/4 NPT Male X 1/8 NPT Female, Brass | McMaster-Carr Supply Company | 4757T91 | Reducing tube diameter inside the Desiccator to adapt to Air-operated Syringe System (Step: Elastomer Injection) |
Coupling, Adapter, Straight, Vacuum Barb 1/4" ID Tube X 1/8 NPT Female, Brass | McMaster-Carr Supply Company | 44555K124 | Reducing tube diameter inside the Desiccator to adapt to Air-operated Syringe System (Step: Elastomer Injection) |
Syringe Adapters, Air Operated, 30/50 ml | EWD Solutions | JEN-JG30A-X6 | Air operated syringe adapter on the inside of the Desiccator; must be compatible with syringes used to hold elastomer (Step: Elastomer Injection) |
Gauge, Dual-Scale Vacuum, 2-1/2" Dial, 1/4 NPT Male, Bottom Connector, 30" Hg-0, Steel Case | McMaster-Carr Supply Company | 4002K11 | Vacuum Gauge (Step: Elastomer Injection) |
Gauge, Dual-Scale Vacuum and Compound, 3-1/2" Dial, 1/4 NPT Male, Center Back, 30" Hg-0, 100 PSI, Steel Case | McMaster-Carr Supply Company | 4004K616 | Pressure Gauge leading to Air-operated Syringe System (Step: Elastomer Injection) |
Oven, Vacuum, Isotemp, Economy | Fisher Scientific | 280A | Standard non-vacuum oven can be used (Step: Curing & Demolding) |
Solidworks CAD | Dassault Systèmes | Solidworks Research Subscription | Other CAD Software can be used for mold master and mold design (Step: Mold Design & Production) |
Запросить разрешение на использование текста или рисунков этого JoVE статьи
Запросить разрешениеThis article has been published
Video Coming Soon
Авторские права © 2025 MyJoVE Corporation. Все права защищены