Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.
Method Article
* Эти авторы внесли равный вклад
Связывание гуанозинтрифосфата (GTP) является одним из самых ранних событий активации G-протеин-связанного рецептора (GPCR). Этот протокол описывает, как фармакологически характеризуют специфические взаимодействия GPCR-лиганда путем контроля связывания радиомеченного GTP-аналога, [ 35 S] гуанозин-5'-O- (3-тио) трифосфата ([ 35 S] GTPγS), в Ответ на лиганд, представляющий интерес.
G-протеин-связанные рецепторы (GPCRs) представляют собой большое семейство трансмембранных рецепторов, которые играют критическую роль в нормальной клеточной физиологии и составляют основную фармакологическую цель для множественных показаний, включая аналгезию, регулирование артериального давления и лечение психических заболеваний. После связывания лиганда GPCR катализируют активацию внутриклеточных G-белков, стимулируя включение гуанозинтрифосфата (GTP). Активированные G-белки затем стимулируют сигнальные пути, которые вызывают клеточные реакции. Передача сигналов GPCR может контролироваться путем измерения включения радиоактивно меченной и негидролизуемой формы GTP, [ 35 S] гуанозин-5'-O- (3-тио) трифосфата ([ 35 S] GTPγS) в G-белки. В отличие от других методов, которые оценивают более длительные процессы сигнализации, связывание [ 35 S] GTPγS измеряет проксимальное событие в передаче сигналов GPCR и, что важно, может различать агонидыTs, антагонисты и обратные агонисты. В настоящем протоколе описывается чувствительный и специфический метод изучения передачи сигналов GPCR с использованием сырых мембранных препаратов архетипического GPCR, μ-опиоидного рецептора (MOR1). Хотя существуют альтернативные подходы к фракционированию клеток и тканей, многие из них являются дорогостоящими, утомительными и / или требуют нестандартного лабораторного оборудования. Настоящий метод обеспечивает простую процедуру, которая обогащает функциональные сырые мембраны. После выделения MOR1 определяли различные фармакологические свойства его агониста [D-Ala, N-MePhe, Gly-ol] -энкефалина (DAMGO) и антагониста налоксона.
G-протеин-связанные рецепторы (GPCRs) представляют собой большое семейство рецепторов клеточной поверхности, ответственных за замечательный массив физиологических процессов, включая анальгезию, обоняние и поведение 1 . GPCR действуют путем определения специфических внешних сигналов и впоследствии стимулируют внутриклеточную сигнализацию. Поэтому они отмечают ключевое соединение между внешней и внутренней средами ячейки. Из-за важной роли GPCRs в биологии они стали основными целями как для фундаментальных исследований , так и для открытия лекарств 2 , 3 .
В отличие от других семейств рецепторов, которые связывают дискретные лиганды, GPCR могут связывать очень разные типы молекул. В то время как один GPCR может взаимодействовать с пептидами, другой может воспринимать фотоны, малые молекулы или ионы 1 , 4 . Хотя их лиганды разнообразны, GPCRs объединены в своем общем архитектореUre и функции. Отдельные GPCR состоят из семи α-спиральных трансмембранных белков с внеклеточными аминоконцами и внутриклеточными карбоксильными терминалами 5 , 6 . GPCRs связаны с внутриклеточными G-белками-гетеротримерными белковыми комплексами, состоящими из α, β и γ-субъединиц, которые опосредуют различные сигнальные пути 7 . G-субъединица представляет собой гуанин-нуклеотидсвязывающий белок, который неактивен при связывании с гуанозиндифосфатом (ВВП) и активен при связывании с гуанозинтрифосфатом (ГТФ) 8,9 . Когда GPCR связывают свои лиганды, они подвергаются конформационному изменению, которое позволяет G α диссоциировать из G βγ , тем самым позволяя G α обменивать ВВП для GTP 7 . Сам рецептор фосфорилируется на своем карбоксильном конце различными серинами / треонамиIne kinases 10 , 11 и интернализуется для ослабления сигнализации 12 , 13 , 14 рецептора. Между тем активированный Gα-мономер и димер G βγ продолжают активировать различные сигнальные пути 7 . Существует несколько изоформ каждой субъединицы G-белка, и каждая изоформа нацелена на конкретные нисходящие пути и системы вторичных мессенджеров. Основные изоформы Gα включают G s , G q , G i / o и G 12-13 . Как правило, отдельные GPCR ассоциируются с конкретной изоформой G α , тем самым связывая внешний раздражитель с конкретным клеточным ответом 1 .
Характеристика взаимодействия GPCR-лиганда имеет решающее значение для понимания биологии рецептора. Поскольку обмен ВВП / ГТФ является одним из первыхNts, который следует за связыванием лиганда, мониторинг связывания GTP может измерять активацию или ингибирование GPCR. Анализ большего количества событий в нисходящем потоке в сигнале GPCR часто не является количественным или стехиометрическим, не может отличить полных агонистов от частичных и может потребовать дорогостоящих реагентов. Более того, увеличение связывания GTP с G α- белками является почти универсальным событием после активации GPCR, что означает, что измерение связывания GTP является широко применимым анализом для мониторинга активности большинства GPCR. Измерение связывания GTP является простым и быстрым подходом к мониторингу передачи сигналов GPCR в клетках, сверхэкспрессирующих рецептор, представляющий интерес, или в нативной ткани. В настоящем протоколе подробно описывается анализ функционального GTP-связывания с использованием архетипического GPCR, μ-опиоидного рецептора (MOR1), чтобы количественно определить активность агониста и антагониста при передаче сигналов GPCR.
В этом протоколе впервые описывается, как изолировать сырые мембраны от клеток, сверхэкспрессирующих MOR1. Обратите внимание, чтоЭтот протокол не ограничивается системами сверхэкспрессии и может быть применен ко многим источникам мембраны, включая нативную ткань или препараты, экспрессирующие множественные рецепторы и G-белки 15 . Затем в протоколе подробно описывается, как измерять связывание радиоактивного аналога GTP с этими мембранами в ответ на различные концентрации [D-Ala, N-MePhe, Gly-ol] -энкефалина (ДАМГО) или налоксона, агониста и антагониста MOR1, соответственно. Аналог GTP [ 35 S] гуанозин-5'-O- (3-тио) трифосфат ([ 35 S] GTPγS) негидролизуется. Это свойство имеет решающее значение, так как G α- субъединицы проявляют внутреннюю активность GTPase 7 и устраняют меченый гамма-фосфат на гидролизуемом радиотеке GTP. Мембраны затем захватывают на стекловолоконные фильтры и промывают, после чего радиоактивно меченный ГТП определяют количественно с помощью жидкостного сцинтилляционного счета. Множественные фармакологические параметры могут быть получены для характеристикиE) взаимодействие рецептора с лигандом, включая полумаксимальный ответ (EC 50 ) и коэффициент Хилла (n H ) для агонистов и полумаксимальную ингибирующую концентрацию (IC 50 ) и константу равновесной диссоциации (K b ) для антагонистов 16 , 17 , 18 .
1. Экспрессия рекомбинантного HA-MOR1 в культивируемых клетках
ПРИМЕЧАНИЕ. Следуйте всем протоколам клеточной культуры в стерильном ламинарном вытяжном шкафу.
2. Фракционирование клеток и сбор мембран
3. [ 35 S] GTPγS Binding
ПРИМЕЧАНИЕ. Используйте стандартный протокол радиохимической безопасности при работе с [ 35 S] GTPγS и при проведении экспериментов по связыванию [ 35 S] GTPγS. Всегда носите защитные перчатки и лабораторное покрытие. Проверьте упаковочный материал на наличие утечек или трещин. Утилизируйте отходы и избыточные реагенты в соответствии с институциональными протоколами.
4. Мембранная фильтрация
5. Сцинтилляционный подсчет жидкости
6. Анализ данных
Фракционирование клеток можно использовать для выделения и обогащения мембранно-ассоциированных белков из цитозольных и ядерных белков. Рисунок 1 представляет собой вестерн-блоттинг, демонстрирующий содержание трех первичных фракций, которые могут...
В настоящем протоколе описаны два отдельных, но взаимодополняющих метода: простой подход к фракционированию клеток и тканей в широкие, но четкие отсеки и средство для исследования передачи сигналов GPCR путем измерения связывания [ 35 S] GTPγS.
Эффективное клеточное фр?...
Авторы не заявляют никаких конкурирующих интересов.
Эта работа была поддержана Национальным институтом здравоохранения грантом DA-000266 и грантом программы T32 для медицинских ученых (CV, NWZ и PCS). Авторы также хотели бы признать somersault18: 24 (somersault1824.com) для Библиотеки наук и медицинских иллюстраций.
Name | Company | Catalog Number | Comments |
DMEM, high glucose, pyruvate, no glutamine | Thermo Fisher Scientific | 10313021 | Warm in 37°C water bath before use |
L-glutamine | Thermo Fisher Scientific | 25030081 | Warm in 37°C water bath before use |
Penicillin-Streptomycin | Thermo Fisher Scientific | 15140122 | Warm in 37°C water bath before use |
Opti-MEM I Reduced Serum Medium | Thermo Fisher Scientific | 31985070 | Warm in 37°C water bath before use |
Fetal Bovine Serum | Thermo Fisher Scientific | 16000044 | Warm in 37°C water bath before use |
Cell culture 10-cm plate | Sigma-Aldrich | CLS430167 | |
Lipofectamine 3000 reagent | Thermo Fisher Scientific | L3000-008 | |
1.6 mL microcentrifuge tubes | USA Scientific | 1615-5500 | |
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) | Sigma-Aldrich | H3375 | |
Tris(hydroxymethyl)aminomethane (Trizma base) | Thermo Fisher Scientific | BP152-1 | |
ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) | Sigma-Aldrich | E3889 | |
Ethylenediaminetetraacetic acid (EDTA) | Sigma-Aldrich | E9884 | |
Sucrose | Sigma-Aldrich | S5016 | |
cOmplete ULTRA Tablets, Mini, EASYpack Protease Inhibitor Cocktail | Sigma-Aldrich | 2900 | |
DL-Dithiothreitol (DTT) | Sigma-Aldrich | DO632 | |
Sodium chloride (NaCl) | Thermo Fisher Scientific | BP358-1 | |
Magnesium chloride (MgCl2) | Sigma-Aldrich | M1028-1 | |
Pellet pestles motor | Sigma-Aldrich | Z359971 | |
Pestles | Bel Art | F19923-0001 | |
Bovine serum albumin (BSA) | Affymetrix | 10857 | |
[35S]guanosine-5’-O-(3-thio)triphosphate ([35S]GTPγS) | Perkin Elmer | NEG030H | |
non-radiolabeled guanosine-5’-O-(3-thio)triphosphate (GTPγS) | Sigma-Aldrich | 89378 | |
guanosine diphosphate (GDP) | Sigma-Aldrich | 51060 | |
Bradford reagent | Bio-Rad | 5000006 | |
UV/VIS spectrophotometer | Beckman Coulter | DU640 | |
spectrophotometer cuvettes | USA Scientific | 9090-0460 | |
orbital shaker | Thermo Fisher Scientific | 2314 | |
thermomixer | Eppendorf | 535027903 | |
glass fiber filters | GE Healthcare Life Sciences | 1821-021 | |
vacuum filtration apparatus | Millipore Corporation | XX2702550 | |
desktop microcentrifuge | Eppendorf | 65717 | |
Scintillation counter | Beckman Coulter | LS6500 | |
scintillation fluid | Ecoscint A | LS-273 | |
scintillation counter vials | Beckman Coulter | 592690 | |
scintillation vial lids | Beckman Coulter | 592928 | |
Prism 6 | GraphPad Software | PRISM 6 | |
ATP1A1 antibody | Developmental Studies Hybridoma | a6F | 1:1000 in 3% BSA |
GAPDH antibody | EMD Millipore | CB1001 | 1:5000 in 3% BSA |
H2B antibody | Cell Signaling | 2934S | 1:2500 in 3% BSA |
PDI antibody | Cell Signaling | 3501S | 1:1000 in 3% BSA |
HA antibody | Roche | 11867423001 | 1:2000 in 3% BSA |
Запросить разрешение на использование текста или рисунков этого JoVE статьи
Запросить разрешениеThis article has been published
Video Coming Soon
Авторские права © 2025 MyJoVE Corporation. Все права защищены