Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.
Протокол для microfluidic спиннинг и микроструктуры характеристика регенерированного шелка Фиброин леска представлен.
Протокол демонстрирует метод для имитации процесса прядения шелкопряда. В процессе собственного спиннинг Договаривающихся спиннинг воздуховодов позволяет протеины шелка быть компактной и приказал обрезка и удлинение силами. Здесь biomimetic microfluidic канал был разработан чтобы имитировать конкретные геометрии спиннинг протока тутового шелкопряда. Спиннинг регенерированный Фиброин шелка (RSF), легированных с высокой концентрацией, была экструдированного через микроканальные сухой спин волокон при температуре и давлении. В процессе после обработки как прядения волокна были обращено и хранятся в водном растворе этанола. Синхротронного излучения широкоугольных рентгеновской дифракции (SR-WAXD) технология была использована для расследования микроструктуры одного RSF волокон, которые были исправлены в держатель образца с оси волокна RSF нормально Микролучевой рентгеновский снимок. Кристалличность, размер кристаллитов и кристаллической ориентации волокна были рассчитаны из WAXD данных. Дифракции дуги в районе экватора двумерной модели WAXD указывают, что после обработки волокна RSF имеет степень высокой ориентации.
Паук и шелкопряд может произвести выдающиеся шелковые волокна из водного раствора белка раствора при температуре и давлении. Стрижка и объемный поток может вызывать образование жидких кристаллов текстуры шелка железы1. В последние годы наблюдается большой интерес в имитируя процесс прядения паука для того, чтобы производить Искусственние волокна высокой прочности. Однако большое количество паука шелк белка не производиться эффективно и экономично земледелия пауков из-за людоедства. Значительное количество шелк шелкопряда можно легко получить от сельского хозяйства. В противном случае шелкопряд и паук имеют аналогичные спиннинг процесса и аминокислотный состав. Таким образом шелкопряда Фиброин шелка выбирается в качестве заменителя спина искусственного шелка животных многими исследователями.
Паук и шелкопряда выдавливать раствор белка через их спиннинг протока в волокно в воздухе. Высокое напряжение сил вдоль протока спиннинг скорее растянуть молекул Фиброин шелка более расширенный конформации2. Искусственного шелка, которые были вращаться волокон, с помощью обычных мокрого прядения и сухой спиннинг процессов3,4, которые не принимают во внимание жидкости сил, возникающих в воздуховоде спиннинг.
Во-первых microfluidic подходы были использованы для расследования Ассамблея шелковыми белками5,6. Затем изготовление microfluidic RSF было исследовано через моделирование режа и объемные силы7,8. Модуль упругости Юнга и диаметр RSF волокон могут быть настроены путем microfluidic мокрого прядения, но прочности Рисованные волокна было меньше, чем 100 МПа7. Наконец высокая прочность волокон RSF успешно были подготовлены с использованием метода microfluidic сухой спиннинг, но диаметр волокна составляет только 2 мкм8. Недавно microfluidic мокрого прядения успешно использовалась в производстве высокопрочных рекомбинантных паук шелковые волокна. Рисунок после спиннинг в воздухе улучшена поверхностных и внутренних дефектов искусственного волокна9.
В этом исследовании внедрена Улучшенная microfluidic спиннинг процесс RSF волокна. Она призвана имитировать процесс прядения шелк шелкопряда, включая спиннинг допинг, стрижка силы и процесс сухой спиннинг. Этот метод спиннинг не только может производить высокой прочности искусственный шёлк, но также может регулировать диаметр волокна. Во-первых RSF, спиннинг допинг стриженый и вытянутые в биомимик канала второго порядка экспоненциального распада. Во-вторых в процесс сухой спиннинг microfluidic10изучались влияет относительная влажность (RH) на волокна морфологии и свойства. По сравнению с обычными спиннинг прядильная, наша система microfluidic крайне biomimetic и может использоваться для производства высокопрочного волокна из растворов при температуре сухой или мокрой спиннинг метод.
Благодаря высоким разрешением, высокая яркость и высокоэнергетического излучения синхротронного излучения рентгеновского она может использоваться для характеристики микроструктуры одного волокна с диаметром нескольких микрометров4,11 , 12 , 13 , 14. здесь, SR-WAXD техника использовалась для расчета кристалличности, размер кристаллитов и кристаллической ориентации волокон RSF.
внимание: пожалуйста, проконсультируйтесь с все соответствующие паспорта безопасности материалов перед использованием. Некоторые из химических веществ, используемых при подготовке литье острой токсичностью. Пожалуйста, используйте средства индивидуальной защиты (очки, перчатки, лаборатории пальто, брюки полная длина и закрыты носок туфли).
1. Microfluidic спиннинг RSF водный раствор
2. Синхротронного излучения характеризация кристаллической структуры RSF волокна
Высокая прочность волокон RSF успешно были произведены используя microfluidic спиннинг метод. Кривых напряжение деформация и SEM изображения растягивается RSF волокон C44R40 показано на рисунке 2. По крайней мере 10 волокна были измерены в испытания на растяжение. К...
Во время диализа RSF раствор рН имеет решающее значение для следующего процесса концентрации. Если значение пэ-аша обессоленной воды меньше, чем 6, RSF решение будет легче гель во время процесса концентрации. Чтобы избежать гелеобразования, CaCl2 добавляется в решение RSF. Концентрация Ca...
Авторы не имеют ничего сообщать.
Эта работа финансируется Фонд национального естественных наук Китая (21674018), Национальный исследовательский ключ и Программа развития Китая (2016YFA0201702 /2016YFA0201700) и программа «Шугуан», поддержке развития образования Шанхай Фонд и Шанхай муниципального образования Комиссии (15SG30), DHU отличать молодой профессор программы (A201302), фондов фундаментальных исследований для университетов Центральной и 111 проекта (№ 111-2-04).
Name | Company | Catalog Number | Comments |
B. mori Cocoons | Farmer in Tongxiang, Zhejiang Province, China | ||
Sodium carbonate, anhydrous, 99.8% | Shanghai Lingfeng Chemical Reagent Co., Ltd., China | Analytically Pure | |
Lithium bromide, 99.1% | Shanghai China Lithium Industrial Co., Ltd., China | Analytically Pure | |
Calcium chloride, anhydrous, 96.0% | Shanghai Lingfeng Chemical Reagent Co., Ltd., China | Analytically Pure | |
Ethanol, anhydrous, 99.7% | Sinopharm Group Chemical Reagent Co.,Ltd., China | 10009218 | Analytically Pure |
SU-8 photoresist | MicroChem Corp., USA | ||
Developing solution | MicroChem Corp., USA | ||
Sylgard 184 | Dow Corning, USA | ||
Isopropanol | Shanghai Lingfeng Chemical Reagent Co., Ltd., China | Analytically Pure | |
Concentrated sulfuric acid | Pinghu Chemical Reagent Factory, China | Analytically Pure | |
30 vol% hydrogen peroxide | Shanghai Jinlu Chemical reagent Co., Ltd., China | Analytically Pure | |
Acetone | Shanghai Zhengxing Chemical Reagent Factory, China | Analytically Pure | |
Oxygen plasma treatment | DT-01, Suzhou Omega Machinery Electronic Technology Co., Ltd., China | ||
Syringe pump | KD Scientific, USA | KDS 200P | |
Humidifier | SEN electric | ||
Driller | Hangzhou Bo Yang Machinery Co., Ltd., China | bench drilling machine Z406c | |
Material testing system | Instron, USA | Model: 5565 | |
PeakFit | Systat Software, Inc., USA | Version 4.12 |
Запросить разрешение на использование текста или рисунков этого JoVE статьи
Запросить разрешениеСмотреть дополнительные статьи
This article has been published
Video Coming Soon
Авторские права © 2025 MyJoVE Corporation. Все права защищены