Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.

В этой статье

  • Резюме
  • Аннотация
  • Введение
  • протокол
  • Результаты
  • Обсуждение
  • Раскрытие информации
  • Благодарности
  • Материалы
  • Ссылки
  • Перепечатки и разрешения

Резюме

Крупномасштабный контроль образцов с наноразмерным разрешением имеет широкий спектр применения, особенно для наноготовых полупроводниковых пластин. Атомно-силовые микроскопы могут быть отличным инструментом для этой цели, но они ограничены скоростью визуализации. В этой работе используются параллельные активные консольные массивы в АСМ для обеспечения высокой пропускной способности и крупномасштабных проверок.

Аннотация

Атомно-силовой микроскоп (АСМ) является мощным и универсальным инструментом для наноразмерных исследований поверхности для получения 3D-изображений топографии образцов. Однако из-за ограниченной пропускной способности АСМ не получили широкого распространения для крупномасштабных инспекций. Исследователи разработали высокоскоростные системы АСМ для записи видео динамических процессов химических и биологических реакций с частотой в десятки кадров в секунду за счет небольшой площади изображения до нескольких квадратных микрометров. Напротив, для контроля крупномасштабных наноструктур, таких как полупроводниковые пластины, требуется наноразмерная визуализация статического образца с пространственным разрешением на сотнях квадратных сантиметров с высокой производительностью. В обычных АСМ используется один пассивный консольный зонд с оптической системой отклонения луча, который может собирать только один пиксель за раз во время АСМ-визуализации, что приводит к низкой пропускной способности. В этой работе используется массив активных консолей со встроенными пьезорезистивными датчиками и термомеханическими приводами, что позволяет одновременно работать в нескольких кантилеверах параллельно для повышения производительности визуализации. В сочетании с нанопозиционерами большого радиуса действия и соответствующими алгоритмами управления каждым кантилевером можно управлять индивидуально для получения нескольких АСМ-изображений. С помощью алгоритмов постобработки на основе данных изображения могут быть сшиты вместе, а обнаружение дефектов может быть выполнено путем сравнения их с желаемой геометрией. В этом документе представлены принципы пользовательской АСМ с использованием активных консольных решеток, за которыми следует обсуждение практических соображений эксперимента для применения в инспекционных приложениях. Выбранные примеры изображений кремниевой калибровочной решетки, высокоориентированного пиролитического графита и масок для литографии в экстремальном ультрафиолетовом диапазоне получены с помощью массива из четырех активных консолей («Quattro») с расстоянием между зондами 125 мкм. Благодаря большей инженерной интеграции этот высокопроизводительный крупномасштабный инструмент визуализации может предоставлять 3D-метрологические данные для масок в экстремальном ультрафиолетовом диапазоне (EUV), химико-механической планаризации (CMP), анализа отказов, дисплеев, тонкопленочных ступенчатых измерений, матриц для измерения шероховатости и канавок для сухих газовых уплотнений с лазерной гравировкой.

Введение

Атомно-силовые микроскопы (АСМ) могут получать 3D-изображения топографии с наноразмерным пространственным разрешением. Исследователи расширили возможности АСМ для создания карт свойств образцов в механической, электрической, магнитной, оптической и тепловой областях. В то же время повышение пропускной способности визуализации также находится в центре внимания исследований по адаптации АСМ к новым экспериментальным потребностям. Существует две основные области применения высокопроизводительной АСМ визуализации: первая категория - это высокоскоростная визуализация небольшой области для регистрации динамических изменений в образце, вызванных биологическими или химическим....

протокол

1. Подготовка образцов для крупномасштабного контроля

  1. Подготовьте образец подходящего размера для АСМ (см. Таблицу материалов).
    ПРИМЕЧАНИЕ: Пластинчатые образцы с диаметром в плоскости от 75 мм до 300 мм и ожидаемым отклонением высоты вне плоскости менее 200 мкм могут помещаться на предметном столике АСМ. В этом исследовании используется маска для экстремального ультрафиолета (EUV) на 4-дюймовой пластине (см. таблицу материалов).
  2. Очистите образец, чтобы удалить загрязняющие вещества, и храните образцы в чистом помещении или среде с низким уровнем запыленности, например, в вакуумной камере или шк....

Результаты

Чтобы продемонстрировать эффективность АСМ широкодиапазонной визуализации с использованием параллельных активных кантилеверов для получения топографической визуализации, на рисунке 2 показаны сшитые изображения калибровочной решетки, сделанные четырьмя кантилеве.......

Обсуждение

Как показано в репрезентативных результатах, активная консольная матрица может быть использована для параллельного захвата нескольких изображений статического образца. Эта масштабируемая установка может значительно повысить производительность визуализации образцов большой площа.......

Раскрытие информации

Конфликт интересов у авторов отсутствует.

Благодарности

Авторы Иво В. Ранглоу и Томас Заттель выражают благодарность Федеральному министерству образования и научных исследований Германии (BMBF) и Федеральному министерству экономики и борьбы с изменением климата Германии (BMWK) за поддержку части представленных методов путем финансирования проектов FKZ:13N16580 «Активные зонды с алмазным наконечником для квантовой метрологии и нанопроизводства» в рамках исследовательского направления KMU-innovativ: «Фотоника и квантовые технологии» и KK5007912DF1 «Конъюнктивный нанопозиционер-сканер для быстрых и крупных метрологических задач в атомно-силовой микроскопии» в рамках Центральной инновационной программы для малых и средних пре....

Материалы

NameCompanyCatalog NumberComments
Active-Cantilever nano analytik GmbHAC-10-2012AFM Probe
E-BeamEBX-30, INC012323-15Mask patterning instrument
Highly Oriented Pyrolytic Graphite – HOPGTED PELLA, INC626-10AFM calibration sample
Mask SampleNanda Technologies GmbHTest substrateEUV Mask Sample substrate
NANO-COMPAS-PRO nano analytik GmbH23-2016AFM Software
nanoMetronom 20nano analytik GmbH1-343-2020AFM Instrument

Ссылки

  1. Ando, T. High-speed atomic force microscopy and its future prospects. Biophysical Reviews. 10 (2), 285-292 (2018).
  2. Soltani Bozchalooi, I., Careaga Houck, A., AlGhamdi, J. M., Youcef-Toumi, K. D....

Перепечатки и разрешения

Запросить разрешение на использование текста или рисунков этого JoVE статьи

Запросить разрешение

Смотреть дополнительные статьи

3D

This article has been published

Video Coming Soon

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены