Sign In

16.2 : Buffers

A solution containing appreciable amounts of a weak conjugate acid-base pair is called a buffer solution, or a buffer. Buffer solutions resist a change in pH when small amounts of a strong acid or a strong base are added. A solution of acetic acid and sodium acetate is an example of a buffer that consists of a weak acid and its salt: CH3COOH (aq) + CH3COONa (aq). An example of a buffer that consists of a weak base and its salt is a solution of ammonia and ammonium chloride: NH3 (aq) + NH4Cl (aq).

How Buffers Work

To illustrate the function of a buffer solution, consider a mixture of roughly equal amounts of acetic acid and sodium acetate. The presence of a weak conjugate acid-base pair in the solution imparts the ability to neutralize modest amounts of added strong acid or base. For example, adding a strong base to this solution will neutralize hydronium ion and shift the acetic acid ionization equilibrium to the right, partially restoring the decreased H3O+ concentration:

Eq1

Likewise, adding a strong acid to this buffer solution will neutralize acetate ion, shifting the above ionization equilibrium right and returning [H3O+] to near its original value. Figure 1 provides a graphical illustration of the changes to the buffer solution when strong acid and base are added. The buffering action of the solution is essentially a result of the added strong acid and base being converted to the weak acid and base that make up the buffer's conjugate pair. The weaker acid and base undergo only slight ionization, as compared to the complete ionization of the strong acid and base. The solution pH, therefore, changes much less drastically than it would in an unbuffered solution.

Image1

Figure 1. Buffering action in a mixture of acetic acid and acetate salt.

This text is adapted from Openstax, Chemistry 2e, Section 14.6: Buffers.

Tags
BuffersPHAcidBaseBuffering CapacityWeak AcidConjugate BaseWeak BaseConjugate AcidBlood PHCarbonic AcidBicarbonate IonsNeutralizeReactSaltHydroxide IonsHydronium Ions

From Chapter 16:

article

Now Playing

16.2 : Buffers

Acid-base and Solubility Equilibria

156.9K Views

article

16.1 : Common Ion Effect

Acid-base and Solubility Equilibria

37.9K Views

article

16.3 : Henderson-Hasselbalch Equation

Acid-base and Solubility Equilibria

62.8K Views

article

16.4 : Calculating pH Changes in a Buffer Solution

Acid-base and Solubility Equilibria

48.9K Views

article

16.5 : Buffer Effectiveness

Acid-base and Solubility Equilibria

44.8K Views

article

16.6 : Titration Calculations: Strong Acid - Strong Base

Acid-base and Solubility Equilibria

26.9K Views

article

16.7 : Titration Calculations: Weak Acid - Strong Base

Acid-base and Solubility Equilibria

39.0K Views

article

16.8 : Indicators

Acid-base and Solubility Equilibria

44.9K Views

article

16.9 : Titration of a Polyprotic Acid

Acid-base and Solubility Equilibria

90.3K Views

article

16.10 : Solubility Equilibria

Acid-base and Solubility Equilibria

45.3K Views

article

16.11 : Factors Affecting Solubility

Acid-base and Solubility Equilibria

31.0K Views

article

16.12 : Formation of Complex Ions

Acid-base and Solubility Equilibria

21.4K Views

article

16.13 : Precipitation of Ions

Acid-base and Solubility Equilibria

25.8K Views

article

16.14 : Qualitative Analysis

Acid-base and Solubility Equilibria

13.3K Views

article

16.15 : Acid-Base Titration Curves

Acid-base and Solubility Equilibria

118.6K Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved