Sign In

4.20 : Introduction to Mechanisms of Enzyme Catalysis

For many years, scientists thought that enzyme-substrate binding took place in a simple "lock-and-key" fashion. This model stated that the enzyme and substrate fit together perfectly in one instantaneous step. However, current research supports a more refined view scientists call induced fit. The induced-fit model expands upon the lock-and-key model by describing a more dynamic interaction between enzyme and substrate. As the enzyme and substrate come together, their interaction causes a mild shift in the enzyme's structure that confirms an ideal binding arrangement between the enzyme and the substrate's transition state. This ideal binding maximizes the enzyme's ability to catalyze its reaction.

The active sites of enzymes are suited to provide specific environmental conditions and are also subject to local environmental influences. Increasing the environmental temperature generally increases reaction rates, enzyme-catalyzed or otherwise. However, increasing or decreasing the temperature outside of an optimal range can affect chemical bonds within the active site to influence substrate binding. High temperatures will eventually cause enzymes, like other biological molecules, to denature, changing the substance's natural properties. Likewise, the local environment's pH can also affect enzyme function. Active site amino acid residues have their own acidic or basic properties optimal for catalysis. Enzymes function optimally within a specific pH range, and altering the temperature or acidic or basic nature can affect the catalytic activity.

Many enzymes don't work optimally, or even at all, unless bound to other specific non-protein helper molecules, either temporarily through ionic or hydrogen bonds or permanently through stronger covalent bonds. Two types of helper molecules are cofactors and coenzymes. Binding to these molecules promotes optimal conformation and function for their respective enzymes. Cofactors are inorganic ions such as iron (Fe2+) and magnesium (Mg2+). For example, DNA polymerase requires a bound zinc ion (Zn2+) to function. Coenzymes are organic helper molecules with a basic atomic structure comprised of carbon and hydrogen, required for enzyme action. The most common sources of coenzymes are dietary vitamins. Some vitamins are precursors to coenzymes, and others act directly as coenzymes.

This text is adapted from Openstax, Biology 2e, Section 6.5 Enzymes

Tags
Enzyme CatalysisMechanismsIntroductionBiochemical ProcessesEnzyme ActivityCatalytic MechanismsSubstrate InteractionReaction RatesEnzyme KineticsBiochemical Reactions

From Chapter 4:

article

Now Playing

4.20 : Introduction to Mechanisms of Enzyme Catalysis

Biochemistry of the Cell

6.7K Views

article

4.1 : Compounds Essential to Human Function

Biochemistry of the Cell

3.8K Views

article

4.2 : Role of Water in Human Biology

Biochemistry of the Cell

5.1K Views

article

4.3 : Introduction to Electrolytes

Biochemistry of the Cell

6.0K Views

article

4.4 : pH Homeostasis

Biochemistry of the Cell

7.9K Views

article

4.5 : Overview of Functional Groups

Biochemistry of the Cell

4.6K Views

article

4.6 : Introduction to Carbohydrates

Biochemistry of the Cell

8.3K Views

article

4.7 : Carbohydrate Metabolism

Biochemistry of the Cell

5.7K Views

article

4.8 : Sugars as Energy Storage Molecules

Biochemistry of the Cell

1.4K Views

article

4.9 : What are Lipids?

Biochemistry of the Cell

16.5K Views

article

4.10 : Lipid-derived Compounds in the Human Body

Biochemistry of the Cell

3.4K Views

article

4.11 : Fats as Energy Storage Molecules

Biochemistry of the Cell

3.4K Views

article

4.12 : What are Proteins?

Biochemistry of the Cell

4.6K Views

article

4.13 : Protein Organization

Biochemistry of the Cell

4.3K Views

article

4.14 : Globular Proteins

Biochemistry of the Cell

4.9K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved