JoVE Logo

Sign In

3.24 : Factors Affecting Dissolution: Polymorphism, Amorphism and Pseudopolymorphism

Polymorphism refers to the existence of a drug substance in multiple crystalline forms, known as polymorphs. Recently, this term has been expanded to include solvates (forms containing a solvent), amorphous forms (non-crystalline forms), and desolvated solvates (forms from which the solvent has been removed).

Some polymorphic crystals possess lower aqueous solubility than their amorphous counterparts, leading to incomplete absorption. For instance, the oral suspension of Chloramphenicol, which exists in several crystal forms, demonstrates that drug concentration in the body relies on the proportion of the more soluble and better-absorbed β-polymorph.

Generally, the most stable polymorph has the lowest free energy. An amorphous form of a drug, being less structurally rigid, often dissolves faster than its crystalline form. Some polymorphs are metastable, meaning that they may transition to a more stable form over time.

Changes in crystal form during manufacturing can cause issues such as tablet cracking or obstacles in compressing a granulation into a tablet, requiring product reformulation. During manufacturing, certain drugs can interact with solvents, resulting in the formation of solvate crystals. When water acts as the solvent, it can produce specific crystalline forms known as hydrates, which possess different solubility characteristics than their anhydrous counterparts. For example, erythromycin hydrates differ significantly in solubility from the anhydrous form of the drug. In contrast, the anhydrous form of ampicillin is reportedly more readily absorbed than ampicillin trihydrate due to the former's quicker dissolution.

Tags

DissolutionPolymorphismAmorphismPseudopolymorphismCrystalline FormsSolubilityDrug AbsorptionSolvate CrystalsMetastable PolymorphsManufacturing IssuesHydratesAnhydrous FormErythromycinAmpicillin

From Chapter 3:

article

Now Playing

3.24 : Factors Affecting Dissolution: Polymorphism, Amorphism and Pseudopolymorphism

Pharmacokinetics: Drug Absorption

263 Views

article

3.1 : Drug Administration and Therapy Phases: Overview

Pharmacokinetics: Drug Absorption

391 Views

article

3.2 : Drug Absorption: Overview

Pharmacokinetics: Drug Absorption

465 Views

article

3.3 : Drug Delivery: Overview

Pharmacokinetics: Drug Absorption

260 Views

article

3.4 : Drug Delivery: Enteral Route

Pharmacokinetics: Drug Absorption

350 Views

article

3.5 : Drug Delivery: Parenteral Route

Pharmacokinetics: Drug Absorption

341 Views

article

3.6 : Drug Delivery: Miscellaneous Routes

Pharmacokinetics: Drug Absorption

286 Views

article

3.7 : Cellular Membranes and Drug Transport

Pharmacokinetics: Drug Absorption

241 Views

article

3.8 : Mechanisms of Drug Absorption: Paracellular, Transcellular, and Vesicular Transport

Pharmacokinetics: Drug Absorption

327 Views

article

3.9 : Passive Diffusion: Overview and Kinetics

Pharmacokinetics: Drug Absorption

342 Views

article

3.10 : Pore Transport and Ion-Pair Transport

Pharmacokinetics: Drug Absorption

316 Views

article

3.11 : Carrier-Mediated Transport

Pharmacokinetics: Drug Absorption

223 Views

article

3.12 : Facilitated Diffusion

Pharmacokinetics: Drug Absorption

259 Views

article

3.13 : Active Transport

Pharmacokinetics: Drug Absorption

374 Views

article

3.14 : Vesicular Trasport: Endocytosis, Transcytosis and Exocytosis

Pharmacokinetics: Drug Absorption

748 Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved