A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We describe a protocol to observe and analyze cell rolling trajectories on asymmetric receptor-patterned substrates. The resulting data are useful for engineering of receptor-patterned substrates for label-free cell separation and analysis.
Lateral displacement of cells orthogonal to a flow stream by rolling on asymmetric receptor patterns presents an opportunity for development of new devices for label-free separation and analysis of cells1. Such devices may use lateral displacement for continuous-flow separation, or receptor patterns that modulate adhesion to distinguish between different cell phenotypes or levels of receptor expression. Understanding the nature of cell rolling trajectories on receptor-patterned substrates is necessary for engineering of the substrates and design of such devices.
Here, we demonstrate a protocol for studying cell rolling trajectories on asymmetric receptor patterns that support cell rolling adhesion2. Well-defined, μm-scale patterns of P-selectin receptors were fabricated using microcontact printing on gold-coated slides that were incorporated in a flow chamber. HL60 cells expressing the PSGL-1 ligand 3were flowed across a field of patterned lines and visualized on an inverted bright field microscope. The cells rolled and tracked along the inclined edges of the patterns, resulting in lateral deflection1. Each cell typically rolled for a certain distance along the pattern edges (defined as the edge tracking length), detached from the edge, and reattached to a downstream pattern. Although this detachment makes it difficult to track the entire trajectory of a cell from entrance to exit in the flow chamber, particle-tracking software was used to analyze and yield the rolling trajectories of the cells during the time when they were moving on a single receptor-patterned line. The trajectories were then examined to obtain distributions of cell rolling velocities and the edge tracking lengths for each cell for different patterns.
This protocol is useful for quantifying cell rolling trajectories on receptor patterns and relating these to engineering parameters such as pattern angle and shear stress. Such data will be useful for design of microfluidic devices for label-free cell separation and analysis.
1. HL60 cell rolling
1.1. Fabrication of Patterned Substrates.
1.2. Cell Rolling Experiments in a Flow Chamber.
2. Representative Results:
Figure (A) shows one of microscope images converted from the video of HL60 rolling interactions with adhesive P-selectin substrates using a 4× objective. Bright and dark regions correspond to P-selectin receptor and PEG regions, respectively. Figure (B) shows the tracks obtained using a customized Matlab program. The edge inclination angle was 10° and the shear stress was 0.5 dyn/cm2. The edge tracking length, le, displacement, d, and the rolling velocities on the edge and inside the bands, Ve and Vp, respectively, are described in Figure (C-1). Figure (C-2) shows the distribution (the number of recorded cells) of edge tracking length. Insets show the average value of le and the rolling velocity on the edge (Ve) and inside the bands (Vp) at the inclination angle α =10° and the fluid shear stress magnitude around 0.5 dyn/cm2. Error bars represent one standard deviation, where n = 3 replicate experiments (3 replicate surfaces) for each condition.
We have described a protocol to examine cell rolling trajectories on asymmetric receptor-patterned surfaces fabricated using microcontact printing2. The optical microscope images of patterned surface showing clear contrast between PEG and P-selectin areas can be used to confirm whether stamping is successful. Sharp, straight edges can be observed when the stamping is performed well. Hard pressing of the stamp may result in stamp deformation which limits the precision of patterns. Wavy edges may be obtained whe...
No conflicts of interest declared.
This project was supported by the Deshpande Center for Technological Innovation at MIT (R.K. and J.M.K.) and the NSF CAREER award 0952493 to R.K. through the Chemical and Biological Separations program. We thank the Institute for Soldier Nanotechnologies (ISN) and the Microsystems Technology Laboratory (MTL) at MIT for use of their facilities.
Name | Company | Catalog Number | Comments |
Human promyelocytic leukemia cells | ATCC | CCL-240 | HL60 cells |
Gold-coated glass slides | EMF | TA134 | Gold slides |
(1-Mercaptoundec-11-yl)tetra(ethylene glycol) | Sigma-Aldrich | 674508 | PEG |
Recombinant human P-selectin | R&D Systems | ADP3-050 | P-selectin |
Bovine serum albumin | Rockland Immunochemicals | BSA-50 | BSA |
Dulbecco’s phosphate buffered saline | Mediatech, Inc. | 21-030 | DPBS |
Sulfuric acid | Sigma-Aldrich | 339741 | |
Hydrogen peroxide | Sigma-Aldrich | 316989 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved