A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Conserved insulin signaling pathways found in the fruit fly Drosophila melanogaster make this organism a potential tool for modeling metabolic disorders including type II diabetes. To this end, it is critical to establish physiological assays to effectively measure systemic insulin action in peripheral glucose disposal in the adult fly.
Conserved nutrient sensing mechanisms exist between mammal and fruit fly where peptides resembling mammalian insulin and glucagon, respectively function to maintain glucose homeostasis during developmental larval stages 1,2. Studies on largely post-mitotic adult flies have revealed perturbation of glucose homeostasis as the result of genetic ablation of insulin-like peptide (ILP) producing cells (IPCs) 3. Thus, adult fruit flies hold great promise as a suitable genetic model system for metabolic disorders including type II diabetes. To further develop the fruit fly system, comparable physiological assays used to measure glucose tolerance and insulin sensitivity in mammals must be established. To this end, we have recently described a novel procedure for measuring oral glucose tolerance response in the adult fly and demonstrated the importance of adult IPCs in maintaining glucose homeostasis 4,5. Here, we have modified a previously described procedure for insulin injection 6 and combined it with a novel hemolymph extraction method to measure peripheral insulin sensitivity in the adult fly. Uniquely, our protocol allows direct physiological measurements of the adult fly's ability to dispose of a peripheral glucose load upon insulin injection, a methodology that makes it feasible to characterize insulin signaling mutants and potential interventions affecting glucose tolerance and insulin sensitivity in the adult fly.
1. Insulin Solution Preparation
2. Needle Preparation and Injection Set-up
3. Fly Preparation
4. Injection Procedure
5. Hemolymph Collection
6. Hemolymph Glucose Determination
7. Representative Results
A typical insulin tolerance response is detected in insulin-injected flies where a drop in circulating glucose levels is detected 15 minutes post-injection. In contrast, such response is not seen in PBS injected flies (Fig. 3). This response in peripheral glucose disposal continues in insulin-injected flies up to 30 minutes post-injection. We routinely extract 0.2-0.5 μl of hemolymph per 4-5 flies in each injection group. Three injection groups are included in each experiment.
Figure 1. Left side of Drosophila thorax showing needle insertion site (Modified from Demerec, 1950) 7. Insert the needle through the center of the prescutum on the anterior, dorsal region of the left side of the thorax.
Figure 2. Frontal view of Drosophila head showing puncture location for hemolymph extraction (Modified from Demerec, 1950) 7. Puncture the head capsule with a finely sharpened tungsten probe in the center of the head capsule just above the ptilinal suture.
Figure 3. A typical insulin tolerance response detected in control adult flies. Control w1118 flies were injected with bovine insulin (1 ng in PBS) or PBS only. Flies in replicate groups were then allowed to recover for 0, 15 or 30 minutes and circulating glucose levels were measured.
The technique described in this report is potentially useful in any study that investigates physiological processes resulting in detectable alterations in Drosophila hemolymph composition. By combining injection and hemolymph collection in this manner, it is possible to ascertain the immediate physiologically relevant effects of a particular experimental treatment or manipulation. The primary advantage of this "bloodletting" technique in hemolymph collection over previous techniques involving decapitation
No conflicts of interest declared.
This work was supported by grants from the NIA to Y-W.C.F (AG21068, AG31086).
Name | Company | Catalog Number | Comments |
Bovine insulin | Sigma-Aldrich | I5500 | |
Infinity Glucose Reagent | Thermo Fisher Scientific, Inc. | TR1541 | |
Manual microinjector | Sutter Instrument Co. | ||
P-87 Flamming/Brown micropipette puller | Sutter Instrument Co. | ||
Single barrel borosilicate capillary glass | A-M Systems | 626000 | |
FD&C Blue No. 1 | McCormick & Co. | ||
1 μl microcapillary tubes | Drummond Scientific | ||
Three-axis manual micromanipulator and base | World Precision Instruments, Inc. |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved