A subscription to JoVE is required to view this content. Sign in or start your free trial.
Transcranial magnetic stimulation (TMS) is a non-invasive tool to gain insight on the physiology and function of the human nervous system. Here, we present our TMS techniques to study cortical excitability of the upper limb and lumbar musculature.
Transcranial magnetic stimulation (TMS) has been in use for more than 20 years 1, and has grown exponentially in popularity over the past decade. While the use of TMS has expanded to the study of many systems and processes during this time, the original application and perhaps one of the most common uses of TMS involves studying the physiology, plasticity and function of the human neuromuscular system. Single pulse TMS applied to the motor cortex excites pyramidal neurons transsynaptically 2 (Figure 1) and results in a measurable electromyographic response that can be used to study and evaluate the integrity and excitability of the corticospinal tract in humans 3. Additionally, recent advances in magnetic stimulation now allows for partitioning of cortical versus spinal excitability 4,5. For example, paired-pulse TMS can be used to assess intracortical facilitatory and inhibitory properties by combining a conditioning stimulus and a test stimulus at different interstimulus intervals 3,4,6-8. In this video article we will demonstrate the methodological and technical aspects of these techniques. Specifically, we will demonstrate single-pulse and paired-pulse TMS techniques as applied to the flexor carpi radialis (FCR) muscle as well as the erector spinae (ES) musculature. Our laboratory studies the FCR muscle as it is of interest to our research on the effects of wrist-hand cast immobilization on reduced muscle performance6,9, and we study the ES muscles due to these muscles clinical relevance as it relates to low back pain8. With this stated, we should note that TMS has been used to study many muscles of the hand, arm and legs, and should iterate that our demonstrations in the FCR and ES muscle groups are only selected examples of TMS being used to study the human neuromuscular system.
1. Single and Paired-Pulse TMS of the FCR and ES Muscles
2. Representative Results:
Following the delivery of a suprathreshold TMS pulse, the muscles being stimulated should demonstrate an easily observable EMG response (the MEP) (illustrated in Figures 4-8). The latency between the stimulus onset and the MEP will vary between the muscle groups being examined, but for the FCR it is generally 16-19 msec (Figure 6) and for the ES it is 17-22 msec (Figure 7; although it should be noted that in some subjects definitive MEP onset in the ES muscles is more difficult to visually identify). It should be noted that when testing the ES muscle group several other muscle groups are also visibly and dramatically stimulated concomitantly (including the muscles of the lower extremity, which are represented within the same general region of the homunculus). During the measurement of intracortical facilitation the MEP amplitude is generally larger than that observed with a single unconditioned pulse (Figure 6 and 7). However, it is our experience that the degree of facilitation varies between muscles groups with some muscle groups-such as the FCR- showing only modest facilitation in many subjects. For the measurement of short-interval and long-interval intracortical inhibition a decrease in the MEP amplitude is generally observed in comparison to a single unconditioned pulse of the same intensity (Figures 6-8).
Figure 1. The basic mechanisms of TMS. The TMS coil induces a magnetic field, which penetrates the scalp and induces an Eddy current within the motor cortex. This eddy current is then able to stimulate neurons within the brain. Figure reprinted from McGinley and Clark, In Press14.
Figure 2. Setup for performing TMS on the FCR muscle. Note the recording of electromyogram (EMG) signals from the forearm, and the TMS paddle over the motor cortex. We generally also record muscle forces, and use electrical peripheral nerve stimulation to obtain the maximal compound muscle fiber action potential, as this is useful in interpreting amplitude values (e.g., one can express and MEP relative to the maximal muscle response as opposed to a absolute mV value which can be heavily influenced by non-physiologic factors such as subcutaneous adipose tissue). Figure reprinted from the following: Clark et al. 20089, Clark et al., 20106, and McGinley et al. 20107.
Figure 3. Setup for performing TMS on the erector spinale muscles. Figure reprinted from Goss et al. 20118.
Figure 4. Example of the motor threshold determination. The EMG traces represent the motor evoked potential (MEP) response to gradually increasing stimulus intensities (represented as a percentage of stimulator output (SO)). Note that at the lower intensities (28-30% of SO) very small MEPs were elicited (sub-threshold), but that at 32% SO a MEP was elicited that reached motor threshold (typically defined as an MEP with a p-p amplitude > 50 μV).
Figure reprinted from McGinley and Clark, In Press14.
Figure 5. TMS during a contraction: motor evoked potential & silent period. The silent period is observed when a subject performs a slight contraction and a single stimulus is applied to the motor cortex. The first part of the silent period is due to spinal cord inhibition and the latter part is attributed to cortical inhibition, specifically GABAB receptors. There is no consensus way to quantify the duration of the silent period, but our findings indicate that either defining it from stimulus onset or MEP onset to the return of the voluntary interference electromyogram signal is the most reliable15.
Figure reprinted from Clark and Quick, 201116, and McGinley and Clark, In Press14.
Figure 6. Change in motor evoked potential sized ith paired pulse TMS of the FCR muscle. Measurement of short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF). To quantify SICI and ICF the conditioning pulse (CP) is set below motor threshold, and the test pulse (TP) is set to evoke MEP's between 0.5-1 mV. At short interstimulus intervals (e.g., 3-msec) the CP inhibits the MEP in comparison to the TP only (SICI), whereas at longer interstimulus intervals (e.g., 15-msec) it facilitates the MEP (ICF).
CP: conditioning pulse, TP: test pulse Figure reprinted from Clark et al., 20106, McGinley et al. 201014, Clark and Quick, 201116, and McGinley and Clark, In Press14.
Figure 7. Change in motor evoked potential sized with paired pulse TMS of the ES muscle. Example of EMG traces from the erector spinae muscles and the measurement of short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF).
Figure reprinted from Goss et al. 20118.
Figure 8. Change in motor evoked potential sized with paired pulse TMS. Measurement of long-interval intracortical inhibition (LICI). To quantify LICI two test pulses are delivered at an interstimulus interval of 100-msec. This results in the second MEP being inhibited in comparison to the first MEP.
Figure reprinted from Clark et al., 20106, McGinley et al. 20107 and McGinley and Clark, In Press14.
The overall goal of this article is to provide scientists and clinicians a visual account of our laboratories use of transcranial magnetic stimulation. However, in addition to providing a visualization of these experiments, below we discuss basic issues to consider when performing TMS in this manner, provide a brief overview of the physiology of TMS responses, and also discuss our use of TMS with regards to the usage of others.
General Issues To Be Aware of When Performing TMS As Described in th...
No conflicts of interest declared.
This work was funded in part by a grant from the Osteopathic Heritage Foundations to BC Clark. We would like to state a special thank you to Marissa McGinley for her assistance in creating many of the figure graphics.
Name | Company | Catalog Number | Comments |
Name of the Equipment | Company | Catalogue number | Comments (optional) |
---|---|---|---|
Transcranial Magnetic Stimulator 2002 Transcranial Magnetic Stimulator Bi-Stim2 Figure-Eight 70-mm coil Double Cone Coil | The Magstim Company | NA | TMS equipment (including coils) |
Biodex System 4 | Biodex | NA | Dynamometer |
Biopac MP150 Data Acquisition System | Biopac | MP150WSW | A-D converter for EMG and force |
AcqKnowledge 4.0 Data acquisition software | Biopac | ACK100W | |
Nikomed Trace 1 ECG electrodes | Nikomed | 2015 | EMG electrodes |
Constant Current Stimulator | Digitimer | DS7A | Peripheral nerve stimulator |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved