A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
FRET-based reporters are increasingly used to monitor kinase and phosphatase activities in live cells. Here we describe a method on how to use FRET-based reporters to assess cell cycle-dependent changes in target phosphorylation.
Förster resonance energy transfer (FRET)-based reporters1 allow the assessment of endogenous kinase and phosphatase activities in living cells. Such probes typically consist of variants of CFP and YFP, intervened by a phosphorylatable sequence and a phospho-binding domain. Upon phosphorylation, the probe changes conformation, which results in a change of the distance or orientation between CFP and YFP, leading to a change in FRET efficiency (Fig 1). Several probes have been published during the last decade, monitoring the activity balance of multiple kinases and phosphatases, including reporters of PKA2, PKB3, PKC4, PKD5, ERK6, JNK7, Cdk18, Aurora B9 and Plk19. Given the modular design, additional probes are likely to emerge in the near future10.
Progression through the cell cycle is affected by stress signaling pathways 11. Notably, the cell cycle is regulated differently during unperturbed growth compared to when cells are recovering from stress12.Time-lapse imaging of cells through the cell cycle therefore requires particular caution. This becomes a problem particularly when employing ratiometric imaging, since two images with a high signal to noise ratio are required to correctly interpret the results. Ratiometric FRET imaging of cell cycle dependent changes in kinase and phosphatase activities has predominately been restricted to sub-sections of the cell cycle8,9,13,14.
Here, we discuss a method to monitor FRET-based probes using ratiometric imaging throughout the human cell cycle. The method relies on equipment that is available to many researchers in life sciences and does not require expert knowledge of microscopy or image processing.
1. Introducing the probe to cells
2. Monitoring ratiometric FRET
3. Verifying and optimizing conditions
4. Analysing FRET
5. Representative Results
Plk1 activity is first visible in the nucleus in G2 phase and peaks during mitosis. Figure 3 shows an experiment using minimal phototoxicity settings as described in section 2. Please note that this is a representative initial result and that exposure conditions or time between images can be modified to increase signal to noise ratio or temporal resolution. Figure 3D shows that a majority of the cells expressing the probe proliferate with a cell cycle time of between 20 and 25 hours, indicating that the imaging conditions and expression levels of the probe do not affect cell cycle timings. Although there is considerable noise, the trend of Plk1 activity increasing in G2 and peaking in mitosis14 is clearly visible (fig 3A). Processing the raw data, here by mean filtering presented as a kymograph (fig 3B), or quantification of the average inverted ratio (fig 3C) can enhance clarity.
Figure 1. Principle of a FRET-based probe to monitor kinase and phosphatase activities. Two fluorophores, typically CFP (blue) and YFP (green), are connected by a phospho-binding domain (orange) and a phosphorylatable sequence (yellow). Phosphorylation (red) mediates binding to the phospho-binding domain, thereby inducing a conformational change in the probe. The conformational change results in a difference in the distance or orientation between the two fluorophores, which affects the FRET efficiency between CFP and YFP. FRET can be visualized by exciting CFP and monitoring YFP emission (dotted lines).
Figure 2. Schematic outline of the experimental procedure.
Figure 3. Plk1 activity is first visible in the nucleus in G2 phase and peaks during mitosis. U2OS cells expressing a FRET-based probe monitoring Plk1 activity9,14 were filmed for 60 hr using a Deltavision Spectris Imaging system equipped with a 20x NA 0.7 air objective and a mercury lamp. Imaging conditions were selected to cause minimal phototoxicity, as outlined in section 2, using 4x binning and neutral density filters that block 99% of the incoming light. A, false color representation of inverted FRET-ratio, following one cell through 4 divisions. B, kymograph of the cell shown in A after applying a mean filter. C, quantification of the inverted FRET ratio of the cell shown in A. D, cumulative mitotic entry of 50 FRET-probe expressing cells, including divisions of daughter cells.
Monitoring FRET throughout the cell cycle requires considerations that are less crucial when assessing short-term responses to external stimuli. First, cell cycle progression is easily perturbed by stress signaling, requiring that phototoxicity is kept to a minimum. Second, all reporters can potentially affect cellular processes by titrating out kinases, phosphatases or interaction domains. The probably most straightforward way to assess if the experimental conditions are adequate is to measure the cell cycle length from...
We have nothing to disclose.
The authors are supported by the Swedish research council, the Swedish foundation for strategic research, the Swedish cancer society, the Swedish child cancer society, Åke Wibergs foundation and Jeanssons foundation.
Name | Company | Catalog Number | Comments |
Leibovitz L-15, no phenol red | GIBCO, by Life Technologies | 21083-027 | |
DMEM+Glutamax-I | GIBCO, by Life Technologies | 31966 | |
Fetal Bovine Serum (FBS) | Hyclone | SV30160.03 | |
0.05% Trypsin EDTA | Hyclone | SH30236.01 | |
Penicillin-Streptomycin | Hyclone | SV30010 | |
DPBS | GIBCO, by Life Technologies | 14287 | |
Puromycin | Sigma-Aldrich | P8833 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved