A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
To study the mutualism between Xenorhabdus bacteria and Steinernema nematodes, methods were developed to monitor bacterial presence and location within nematodes. The experimental approach, which can be applied to other systems, entails engineering bacteria to express the green fluorescent protein and visualizing, using fluorescence microscopy bacteria within the transparent nematode.
Symbioses, the living together of two or more organisms, are widespread throughout all kingdoms of life. As two of the most ubiquitous organisms on earth, nematodes and bacteria form a wide array of symbiotic associations that range from beneficial to pathogenic 1-3. One such association is the mutually beneficial relationship between Xenorhabdus bacteria and Steinernema nematodes, which has emerged as a model system of symbiosis 4. Steinernema nematodes are entomopathogenic, using their bacterial symbiont to kill insects 5. For transmission between insect hosts, the bacteria colonize the intestine of the nematode's infective juvenile stage 6-8. Recently, several other nematode species have been shown to utilize bacteria to kill insects 9-13, and investigations have begun examining the interactions between the nematodes and bacteria in these systems 9.
We describe a method for visualization of a bacterial symbiont within or on a nematode host, taking advantage of the optical transparency of nematodes when viewed by microscopy. The bacteria are engineered to express a fluorescent protein, allowing their visualization by fluorescence microscopy. Many plasmids are available that carry genes encoding proteins that fluoresce at different wavelengths (i.e. green or red), and conjugation of plasmids from a donor Escherichia coli strain into a recipient bacterial symbiont is successful for a broad range of bacteria. The methods described were developed to investigate the association between Steinernema carpocapsae and Xenorhabdus nematophila 14. Similar methods have been used to investigate other nematode-bacterium associations 9,15-18and the approach therefore is generally applicable.
The method allows characterization of bacterial presence and localization within nematodes at different stages of development, providing insights into the nature of the association and the process of colonization 14,16,19. Microscopic analysis reveals both colonization frequency within a population and localization of bacteria to host tissues 14,16,19-21. This is an advantage over other methods of monitoring bacteria within nematode populations, such as sonication 22or grinding 23, which can provide average levels of colonization, but may not, for example, discriminate populations with a high frequency of low symbiont loads from populations with a low frequency of high symbiont loads. Discriminating the frequency and load of colonizing bacteria can be especially important when screening or characterizing bacterial mutants for colonization phenotypes 21,24. Indeed, fluorescence microscopy has been used in high throughput screening of bacterial mutants for defects in colonization 17,18, and is less laborious than other methods, including sonication 22,25-27and individual nematode dissection 28,29.
1. Construction of a Fluorescent Bacterial Strain via Conjugation
2. Production of Axenic Nematode Eggs
3. Co-cultivation Assay with Fluorescent Bacteria
4. Collection of Early Life Stages for Screening
5. Screening Nematodes for Bacterial Association by Microscopy
6. Representative Results
Example microscope images of Steinernema nematodes associated with Xenorhabdus bacteria are shown in Figure 3. To create the composite image seen in Figure 3A, a phase contrast image was overlaid with a fluorescent image. The arrow in Figure 3A indicates the bacteria present within the infective juvenile nematode (bar = 100 μm). Figure 3B was constructed in a similar manner and depicts a juvenile nematode with green fluorescent protein labeled bacteria (green rods) localized throughout the nematode intestinal lumen (bar = 20 μm). A population of the nematodes from two media were counted and scored for colonization by the bacterial symbiont (Table 1). For robust statistics, it is best to count at least 100 nematodes per sample with at least 30 falling in each category. As seen in Table 1, these nematodes are colonized at a level of approximately 14.6% when grown on lipid agar and 68.6% when grown on liver kidney agar. Other nematode and bacterial species have been shown to have different levels of colonization. For example X. nematophila colonizes 99% of S. carpocapsae infective juveniles (Martens 2003), and P. luminescens colonizes 26% of H. bacteriophora infective juveniles (Ciche 2003).
Figure 1. Schematic outline of the method. A. The bacterium is engineered to express a fluorescent protein. B. Nematode eggs are isolated from adult nematodes to produce sterile nematodes. C. The sterile nematodes are co-cultivated with the fluorescent bacteria. D. The resulting life stages are viewed under a microscope to evaluate bacterial presence within the nematode.
Figure 2. Depiction of adult females containing eggs. A. The schematic shows the general appearance of Steinernema females. Inset: DIC image of a S. feltiae gravid female. The black arrow indicates the vulva. White arrows show visible eggs. Image is at 20X magnification, and the scale bar represents 100 μm. B. DIC image of a developed but unhatched S. feltiae nematode egg. Image is 40X magnification, and the scale bar represents 50 μm. C. DIC image of eggs isolated from S. feltiae nematodes under 10X magnification. Scale bar is 100 μm.
Figure 3.Example microscope images of nematode-bacterial association. A. S. puntauvense nematodes were associated with their bacterial symbiont, X. bovienii, expressing GFP. The image is a composite image produced by overlaying a phase contrast image with a fluorescent image from the same field of view. The arrow indicates the fluorescent bacterial symbiont within the nematode host. Scale bar represents 100 μm. B. This image shows a S. carpocapsae juvenile nematode with GFP-expressing X. nematophila localized within the nematode intestine. This image was constructed through overlaying a fluorescent image over a differential interference contrast image. The scale bar represents 20 μm.
Strain | Number of Nematodes With acteria | Total Nematodes Counted | Percent of Nematodes olonized |
S. puntauvense Lipid Agar | 30 | 205 | 14.60% |
S. puntauvense Liver Kidney Agar | 72 | 105 | 68.60% |
Table 1. Example scoring of a nematode population for bacterial presence. In this experiment, axenic S. puntauvense nematodes were grown with their GFP-expressing symbiont on different growth media (lipid agar and liver kidney agar 32) to test for colonization defects. A total of at least one hundred nematodes per sample were counted and scored for the presence of bacteria. For statistical power, three experimental replicates should be counted with at least 30 nematodes falling in each category.
Table 2. Fluorescent protein containing plasmids. A list of potential plasmids for insertion of a fluorescent protein into the bacterial symbiont is given listed by name of plasmid. Other information included are the fluorescent protein encoded, antibiotic cassette used for plasmid maintenance, other instructions for use, the source of the plasmid. The concentration noted in parentheses is the concentration of the antibiotic used for X. nematophila. Each of these plasmids has been used successfully in either Xenorhabdus or Photorhabdus. Additional information can be obtained from the noted citations. Depending on the bacterium being tested, some plasmids may not work based upon the fluorescent protein, antibiotic selection, insertion site, or origin of replication. The plasmids listed above contain different features that may enable use in the bacterium of interest. For example, mini-Tn7-KSGFP inserts into the attTn7 site of the chromosome, while pECM20 inserts into the X. nematophila chromosome by homologous recombination. Alternatively, the pPROBE plasmids are maintained extrachromosomally, and each pPROBE plasmid has the same backbone and fluorophore but have different selectable markers or origins of replication to enable their use in a variety of taxonomic or mutant backgrounds.
Access restricted. Please log in or start a trial to view this content.
The protocol described here provides a method for the optical detection of bacteria within a nematode host (Figure 1). This method takes advantage of the optical transparency of nematodes and the ability to fluorescently label bacteria, enabling in vivo analysis of bacteria within the nematode host (Figure 3). Specifically, this approach identifies bacterial localization within its host. By counting a nematode population and scoring for bacterial presence, the frequency of bacte...
Access restricted. Please log in or start a trial to view this content.
No conflicts of interest declared.
The authors wish to thank Eugenio Vivas, Kurt Heungens, Eric Martens, Charles Cowles, Darby Sugar, Eric Stabb, and Todd Ciche for their contributions to the development of this protocol and tools used. KEM and JMC were supported by National Institutes of Health (NIH) National Research Service Award T32 (AI55397 "Microbes in Health and Disease"). JMC was supported by a National Science Foundation (NSF) Graduate Research Fellowship. This work was supported by grants from the National Science Foundation (IOS-0920631 and IOS- 0950873).
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Lipid Agar (sterile) | 8 grams nutrient broth, 15 grams agar, 5 grams yeast extract, 890 ml water, 10 ml 0.2 g/ml MgCl2. 6H20, 96 ml corn syrup solution*, 4 ml corn oil* Stir media while pouring plates *add sterile ingredient after autoclaving | ||
Corn Syrup Solution (sterile) | 7 ml corn syrup, 89 ml water mix and autoclave | ||
Egg Solution | 16.6 ml 12% sodium hypochlorite, 5 ml 5M KOH, 80 ml water | ||
Lysogeny Broth (sterile) | 5 grams yeast extract, 10 grams tryptone, 5 grams salt, 1 L water mix and autoclave | ||
Microfuge | Fisher | 13-100-675 | Any microfuge that holds microfuge tubes will work |
Centrifuge | Beckman | 366802 | Large table top centrifuge that holds 15 ml and 50 ml conical tubes |
Sterile 60 mm X 15 mm Petri Dish | Fisher | 0875713 | |
50 ml centrifuge tubes | Fisher | 05-539-6 | |
15 ml centrifuge tubes | Fisher | 05-531-6 | |
Sterile 100 mm X 20 mm Petri Dish | Fisher | 0875711Z | Deeper than standard Petri dishes |
24-well plate | Greiner Bio-One | 662000-06 | |
Microscope | The microscope needs florescent capabilities compatible with your fluorophore | ||
Paraformaldehyde | Electron Microscopy Sciences | 15710 | |
PBS (sterile) | 8 g NaCL 0.2 g KCL 1.44 g Na2HPO4 0.24 g KH2PO4 1 L water Adjust to a pH of 7.4 and water to 1 L and autoclave | ||
Microfuge tubes | Fisher | 05-408-138 | 2 ml or 1.5 ml tubes |
Shaker | Any shaker that causes the liquid to gently move will work | ||
Diaminopimelic acid | Sigma | D-1377 | If needed, supplement media to a concentration or 1 mM |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved