A subscription to JoVE is required to view this content. Sign in or start your free trial.
A method of quantitatively evaluating the chemotactic response of Caenorhabditis elegans is described. A chemotactic index (CI) was employed as a way to precisely evaluate the response of worms to certain targets, and serve as a platform of comparison between strains and compounds of interest.
Many organisms use chemotaxis to seek out food sources, avoid noxious substances, and find mates. Caenorhabditis elegans has impressive chemotaxis behavior.
The premise behind testing the response of the worms to an odorant is to place them in an area and observe the movement evoked in response to an odorant. Even with the many available assays, optimizing worm starting location relative to both the control and test areas, while minimizing the interaction of worms with each other, while maintaining a significant sample size remains a work in progress 1-10. The method described here aims to address these issues by modifying the assay developed by Bargmann et al.1. A Petri dish is divided into four quadrants, two opposite quadrants marked "Test" and two are designated "Control". Anesthetic is placed in all test and control sites. The worms are placed in the center of the plate with a circle marked around the origin to ensure that non-motile worms will be ignored. Utilizing a four-quadrant system rather than one 2 or two 1 eliminates bias in the movement of the worms, as they are equidistant from test and control samples, regardless of which side of the origin they began. This circumvents the problem of worms being forced to travel through a cluster of other worms to respond to an odorant, which can delay worms or force them to take a more circuitous route, yielding an incorrect interpretation of their intended path. This method also shows practical advantages by having a larger sample size and allowing the researcher to run the assay unattended and score the worms once the allotted time has expired.
Ward first developed the chemotaxis assay in 1973 5, and since then it has had far reaching applications. Neurobiology is one field that has benefitted from using a variety of chemotaxis assays. Olfactory adaptation, a simple form of learning and memory, has been demonstrated in C. elegans using chemotaxis assays 6. They have also been used to show that C. elegans can develop ethanol tolerance-a result that not only demonstrates the behavioral plasticity of the worms, but that also shows that the worms can be very useful in the study of alcohol dependence in humans 3. Assays have even been developed to demonstrate the ability of C. elegans to store short and long term memory by showing that associations are made by the worms between chemoattractants and food (OP50) 7. Additionally, given the extensive information currently available regarding the C. elegans genome, the chemotaxis behavior of C. elegans has been altered numerous times by inducing mutations 1,8. This allows for many exciting engineering possibilities, such as the development of C. elegans as a bioremediation tool. Thus, since the initial development of the chemotaxis assay in 1973, it has been frequently altered and used to elucidate mysteries in a variety of disciplines.
Certain assays aimed to discover the specific route taken by the worms toward a target. The prototypical assay of this kind was developed by Ward 5. Three worms were placed on melted agar for 15 min. Their movements were traced by the imprint they left as they travelled from the periphery of the plate up a gradient to an attractant at the center of the plate. All worms on the plate were arrested using chloroform at the end of each trial. One descendant of this method placed a single worm in the middle of the plate with the attractant and the control at equal and opposite distances from the origin 2.
Pierce-Shimomura et al. developed an assay to observe the exact nature of the movement involved in chemotaxis9. Individual worms were placed in 9 cm Petri dishes either containing a uniform concentration of the attractant or a radial shaped gradient, culminating in the source of the attractant. A computer software program that recognized the worm was used to record the observed behavior. A video camera attached to a microscope worked in conjunction with the stage to adjust the Petri dish automatically as the assay ran to ensure the worm remained in the field of view. From this, more detailed information was discovered regarding the cause of pirouettes displayed by C. elegans.
Other assays, more similar to the one described here, tested the response of a large population of worms to test compounds. Two-quadrant chemotaxis assays have been used to explore the roles that various neurons, receptors, and signal transduction molecules played when C. elegans was exposed to various compounds 1. Between 20-50 washed worms were placed near the center of the plate with an attractant and a control at polar ends along with the anesthetic, sodium azide (NaN3). After 60 min, a chemotactic index with values from -1.0 to +1.0 was generated based on the difference between how many worms were affixed to the attractant or the control. A similar chemotactic index was used in the assay reported in this article, although the earlier assay failed to strictly evaluate non-motile worms. This assay was then further applied to testing the effects of neuronal ablation on chemotaxis.
Another variation of the aforementioned assay was performed where 100-200 worms were placed at the center of a plate containing four quadrants 3. Adjacent quadrants either contained the test or control substance. As in previous assays, the worms were immobilized by the action of sodium azide before being scored. A similar method is described here as a way of evaluating the response of C. elegans to various compounds. However, the method below has the added benefit of only evaluating worms that have passed a threshold distance separating mobile from immobile worms.
Other assays have incorporated similar guidelines for ignoring immobile worms. Frøkjær-Jensen et al. developed a versatile assay which can be used to test both volatile and water soluble compounds 10. A Petri dish was divided into four quadrants. The top and bottom quadrants did not contain solvents. The left quadrant contained water, and the right contained the attractant. When testing volatile odorants, the analyte was placed on the lid of the dish, over the proper quadrant, whereas water soluble compounds were placed directly on the agar.
The methods currently in existence for evaluating the chemotactic response of C. elegans are constantly being refined to optimize their ease of use, efficiency, and accuracy. So, while the assay described here has the capability of assessing the greatest number of worms (maximum throughput: 250 worms/hour per plate, slightly greater than the throughput demonstrated by Lee et al. 3); the real strength of this method is the succinct culmination of many of the attributes of earlier assays (Table 1).
1. Preparing/washing the Worms
2. Preparing the Test Plates
3. Running the Assay
4. Interpreting the Scores/Determining the Chemotaxis Index
(1)
Chemotaxis Index = (# Worms in Both Test Quadrants - # Worms in Both Control Quadrants) / (Total # of Scored Worms)
A +1.0 score indicates maximal attraction towards the target and represents 100% of the worms arriving in the quadrants containing the chemical target. An index of -1.0 is evidence of maximal repulsion. Similar assay methods have already been employed 3 (Table 1).
Comparing wild-type (N2) C. elegans to the odr-10(ky10) mutant.
We used diacetyl, a known C. elegans chemoattractant, to compare wildtype worms to that of a mutant that lacks the receptor for diacetyl 1,12. For wildtype (N2) worms the chemotactic index was 0.100±0.066 to ethanol, and 0.839±0.031 to 0.5% diacetyl. As expected, diacetyl elicits a significant chemoattractive response from wild-type worms (P<0.003). In contrast the o...
Chemotaxis, although controlled by a complex set of neuronal and cellular mechanisms, can be easily and objectively quantified using chemotaxis assays. To obtain the best results from the assays, certain critical steps must be taken. Firstly, staging the worms is essential in yielding consistent experimental results. Worms at different life stages behave differently 13; so mixed stage worms may skew experimental results. Secondly, ensuring all E. coli is washed off the worms is crucial, as residua...
We have nothing to disclose.
We thank Life Sciences and the Faculty of Arts and Science at Queen's University for funding this work. As well, we thank the Chin-Sang laboratory for providing the necessary reagents, equipment and technical support. We also thank QGEM 2011, especially Tony He for his contribution to the discussion.
Name | Company | Catalog Number | Comments |
Name of Reagent/Material | Company | Catalogue Number | Comments |
S Basal (- cholesterol) [5.8 g NaCl; 1 M K phosphate buffer, pH 6.0; dH2O to 1 liter.] Autoclave | |||
PicoFuge | Stratagene | 400552 | |
Microscopes | Leica | ||
Dissecting | Leica | ||
P1000 Pipette | Gilson | ||
P10 Pipette | Gilson | ||
0.5 M Sodium Azide | |||
Chemotaxis Agar [1.6% BBL-agar (Benton-Dickinson) or 2% Difco-agar. Autoclave. Add 5 mM potassium phosphate, pH 6.0; 1 mM CaCl2, 1 mM MgSO4] | |||
Ethanol/Distilled Water | |||
Test Compounds (eg. 0.5% diacetyl) | |||
Agar | Bio-Rad | 166-0600 | |
NH4Cl | Amresco | CA97062-046 | |
MOPS | VWR | CA12001-120 | |
NH4OH | BDH | CABDH8641-2 | |
0.25% Tween 20 | Bio-Rad | 170-6531 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved