A subscription to JoVE is required to view this content. Sign in or start your free trial.
A method to analyze the solvent accessibility of the thiol group of cysteine residues of Maize rayado fino virus (MRFV)-virus-like particles (VLPs) followed by a peptide cross-linking reaction is described. The method takes advantage of the availability of several chemical groups on the surface of the VLPs that can be targets for specific reactions.
Mimicking and exploiting virus properties and physicochemical and physical characteristics holds promise to provide solutions to some of the world's most pressing challenges. The sheer range and types of viruses coupled with their intriguing properties potentially give endless opportunities for applications in virus-based technologies. Viruses have the ability to self- assemble into particles with discrete shape and size, specificity of symmetry, polyvalence, and stable properties under a wide range of temperature and pH conditions. Not surprisingly, with such a remarkable range of properties, viruses are proposed for use in biomaterials 9, vaccines 14, 15, electronic materials, chemical tools, and molecular electronic containers4, 5, 10, 11, 16, 18, 12.
In order to utilize viruses in nanotechnology, they must be modified from their natural forms to impart new functions. This challenging process can be performed through several mechanisms including genetic modification of the viral genome and chemically attaching foreign or desired molecules to the virus particle reactive groups 8. The ability to modify a virus primarily depends upon the physiochemical and physical properties of the virus. In addition, the genetic or physiochemical modifications need to be performed without adversely affecting the virus native structure and virus function. Maize rayado fino virus (MRFV) coat proteins self-assemble in Escherichia coli producing stable and empty VLPs that are stabilized by protein-protein interactions and that can be used in virus-based technologies applications 8. VLPs produced in tobacco plants were examined as a scaffold on which a variety of peptides can be covalently displayed 13. Here, we describe the steps to 1) determine which of the solvent-accessible cysteines in a virus capsid are available for modification, and 2) bioconjugate peptides to the modified capsids. By using native or mutationally-inserted amino acid residues and standard coupling technologies, a wide variety of materials have been displayed on the surface of plant viruses such as, Brome mosaic virus 3, Carnation mottle virus 12, Cowpea chlorotic mottle virus 6, Tobacco mosaic virus 17, Turnip yellow mosaic virus 1, and MRFV 13.
1. Virus Inoculation and VLPs Purification from Nicotiana benthamiana Plants
2. Fluorescein-5-maleimide-labeling Reactions of VLPs
3. Labeling Reaction and Determination of Biotin Incorporation
4. Cross-linking of Cys 2-VLPs and F Peptide
Transient expression of mutant MRFV coat protein (CP) genes in N. benthamiana plants in a PVX-based vector producing VLPs is described in Figure 1. The modified MRFV coat protein gene is amplified by PCR and then placed under the transcriptional control of the duplicated subgenomic CP promoter in a PVX-based vector, pP2C2S 2, (a gift of D. Baulcombe, Sainsbury Laboratories, Norwich, England). In vitro RNA transcription produces RNA transcripts that are then used to ino...
The method presented here enables a very sensitive and rapid analysis of reactive cysteines present on the surface of plant-produced VLPs as well as on other protein complexes. Maleimides are thiol-specific reagents, which react with free sulfhydryl-containing molecules to form stable thioether bonds. This method draws on the specificity of the maleimides to react with sulfhydryl groups not involved in interactions with other amino acids. Preserving the native structure of the VLPs is very important through the en...
Mention of the trade names of commercial products in the publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.
Name | Company | Catalog Number | Comments |
Name of the reagent | Company | Catalog number | Comments |
Thinwall, Ultra-Clear Tubes | Beckman | 344059 | |
mMESSAGE mMACHINE T7 Kit | Life Tecnologies | AM1344M | |
Fluorescein-5-Maleimide | Thermo Scientific Life Technologies | 46130 F150 | 46130 is out of order substitute with F150 |
Pierce Biotin Quantitation Kit | Thermo Scientific | 28005 | |
EZ-Link Maleimide-PEG2-Biotin, No-Weigh Format | Thermo Scientific | 21901 | |
SM(PEG)n Crosslinkers | Thermo Scientific | 22107 | |
10-20% Tris-Glycine gel | Invitrogen | EC61352 | |
Laemmli Buffer | Bio-Rad | 1610737 | |
Tris Glycine SDS Running Buffer | Invitrogen | LC2675 | |
Tris Glycine Transfer Buffer | Invitrogen | LC3675 | |
Nitrocellulose Membrane Filter Paper Sandwich | Invitrogen | LC2001 | |
Phosphatase Labeled Affinity Purified Antibody to Rabbit IgG | Kirkegaard and Perry Laboratories | 0751516 | |
NBT/BCIP Phosphatase Substrate | Kirkegaard and Perry Laboratories | 508107 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved