A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Genetically encoded optogenetic tools enable noninvasive manipulation of specific neurons in the Drosophila brain. Such tools can identify neurons whose activation is sufficient to elicit or suppress particular behaviors. Here we present a method for activating Channelrhodopsin2 that is expressed in targeted neurons in freely walking flies.
A growing number of genetically encoded tools are becoming available that allow non-invasive manipulation of the neural activity of specific neurons in Drosophila melanogaster1. Chief among these are optogenetic tools, which enable the activation or silencing of specific neurons in the intact and freely moving animal using bright light. Channelrhodopsin (ChR2) is a light-activated cation channel that, when activated by blue light, causes depolarization of neurons that express it. ChR2 has been effective for identifying neurons critical for specific behaviors, such as CO2 avoidance, proboscis extension and giant-fiber mediated startle response2-4. However, as the intense light sources used to stimulate ChR2 also stimulate photoreceptors, these optogenetic techniques have not previously been used in the visual system. Here, we combine an optogenetic approach with a mutation that impairs phototransduction to demonstrate that activation of a cluster of loom-sensitive neurons in the fly's optic lobe, Foma-1 neurons, can drive an escape behavior used to avoid collision. We used a null allele of a critical component of the phototransduction cascade, phospholipase C-β, encoded by the norpA gene, to render the flies blind and also use the Gal4-UAS transcriptional activator system to drive expression of ChR2 in the Foma-1 neurons. Individual flies are placed on a small platform surrounded by blue LEDs. When the LEDs are illuminated, the flies quickly take-off into flight, in a manner similar to visually driven loom-escape behavior. We believe that this technique can be easily adapted to examine other behaviors in freely moving flies.
A growing arsenal of genetically encoded tools have been developed to manipulate neural activity in specific cells in Drosophila melanogaster1. These tools enable the noninvasive activation or silencing of specific neurons in the intact and freely moving animal. Among these, Channelrhodopsin2 (ChR2), a light-activated cation channel, offers key advantages, since it can be temporally controlled and quickly induced. When neurons that express ChR2 are exposed to bright blue (470 nm) light they rapidly depolarize and exhibit elevated firing rates3-5. Such targeted activation of specific neurons in freely moving animals has revealed the sufficiency of particular neurons for behaviors such as CO2 avoidance3, proboscis extension2,4, and giant-fiber mediated startle responses4. However, as the intense light sources necessary to stimulate ChR2 also stimulate photoreceptors, applying optogenetic techniques to the visual system has been limited. By combining an optogenetic approach with a mutation that impairs phototransduction, we have demonstrated that activation of a specific cluster of neurons in the fly's optic lobe can drive the escape behavior used to avoid collision6.
Most, if not all, visual animals exhibit an escape behavior to avoid collisions with oncoming objects. Walking or stationary flies, when presented with a looming collision, take-off into flight, away from the oncoming collision7-9. These take-offs are characterized by raised wings prior to take-off and an unstable flight trajectory10,11. This response is distinct from the giant-fiber mediated startle response, jumps that are not preceded by raised wings, and usually result in a free-falling tumble4,9 . Having identified a specific cluster of loom sensitive neurons in the optic lobe, Foma-1 neurons, that are uniquely tuned to encode approaching objects, we sought to probe their involvement in the fly's loom escape behavior. Here we demonstrate the use of optogenetics to selectively activate these neurons and elicit the fly's escape behavior.
We use the Gal4-UAS transcriptional activator system to drive the expression of ChR2 in the Foma-1 neurons. ChR2 requires the cofactor all-trans-retinal and as this is found in low levels in the Drosophila central nervous system it must be supplemented in the flies' diet.3,4 As bright light is used to activate ChR2 and flies exhibit strong phototactic behaviors12, we sought to eliminate the possibility of a visual response to the stimulus. To do this, we used animals that were homozygous mutant for a null allele of the norpA gene, which encodes a critical component of the phototransduction cascade, phospholipase C-β. Photoreceptors in such mutant flies are unable to respond to light13. To test the optogenetic stimulation of the escape response, we need to isolate a single fly and bathe it in bright blue light. To do this, we place individual flies in pipet tips. One pipet tip is placed in a custom holder, such that the fly will geotactically walk up the tip and out onto a rectangular platform. The fly is able to freely walk around on the top of this platform. The platform is surrounded by four blue LED arrays, each containing 3 LEDs, focused on the top of the platform. After the fly is on the platform, the LEDs are illuminated, and the fly's response is recorded using a high-speed camera6.
Access restricted. Please log in or start a trial to view this content.
1. Generate Channelrhodopsin Flies
2. Make 10 μM All-trans-retinal Enhanced Food
3. Equipment
4. Behavioral Assay
Access restricted. Please log in or start a trial to view this content.
Blind flies expressing either ChR2 or the G105 driver alone show a low rate of take-off following their illumination with bright blue light. Blind flies exhibited the same rate of take-off regardless of illumination (Figure 2), suggesting that these take-offs were spontaneous rather than due to the illumination with blue light. When the ChR2 is expressed in the Foma1 neurons, however, illumination with blue light elicits the escape response. Over 50% of the flies tested took off within 1 sec of illuminat...
Access restricted. Please log in or start a trial to view this content.
We have demonstrated optogenetic stimulation of escape behaviors by bathing freely walking flies in bright blue light. This approach can be easily adapted to examine other behaviors in freely walking flies, and can be scaled to larger platforms by simply tiling the LED arrays we used over a larger area. Using either the inexpensive camera we describe, or other available camera systems, the user can tailor the frame rate and spatial resolution of the images acquired to suit the behavior of interest. Additionally, o...
Access restricted. Please log in or start a trial to view this content.
No conflicts of interest declared.
This work was funded by a Stanford Dean's Fellowship (SEJdV), a National Institutes of Health Director's Pioneer Award (TRC DP0035350), a McKnight Foundation Scholar's Award (TRC) and R01 EY022638 (TRC).
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Reagent | |||
All-trans Retinal | Advance Scientific Chemical Inc | R3041 | |
Equipment | |||
Heat Sink 9.2 C/W | Luxeonstar | LPD30-30B | 30 mm square X 30 mm high |
Carclo 18 ° Tri-Lens | Luxeonstar | 10507 | |
Blue Rebel LED on Tri-Star Base | Luxeonstar | MR-B0030-20T | 470 nm, 174 lm @ 700 mA. |
700 mA BuckPuck DC Driver | Luxeonstar | 3021-D-E-700 | |
Wiring Harness for BuckPuck Driver | Luxeonstar | 3021-HE | |
Pre-cut thermal adhesive tape | Luxeonstar | LXT-S-12 | 20 mm Hex Base |
Snap-Loc Coolant Hose, ¼" ID | McMaster-Carr | 5307K49 | |
Snap-Loc Coolant Hose Connector | McMaster-Carr | 5307K39 | ¼" NPT Male |
Laboratory Grade Switching Mode Programmable DC Power Supply | BK Precision | 1698 | |
Exilim camera | Casio | EX-FH20 |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved