JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

A label-free optical biosensor for rapid bacteria detection is introduced. The biosensor is based on a nanostructured porous Si, which is designed to directly capture the target bacteria cells onto its surface. We use monoclonal antibodies, immobilized onto the porous transducer, as the capture probes. Our studies demonstrate the applicability of these biosensors for the detection of low bacterial concentrations within minutes with no prior sample processing (such as cell lysis).

Abstract

A label-free optical biosensor based on a nanostructured porous Si is designed for rapid capture and detection of Escherichia coli K12 bacteria, as a model microorganism. The biosensor relies on direct binding of the target bacteria cells onto its surface, while no pretreatment (e.g. by cell lysis) of the studied sample is required. A mesoporous Si thin film is used as the optical transducer element of the biosensor. Under white light illumination, the porous layer displays well-resolved Fabry-Pérot fringe patterns in its reflectivity spectrum. Applying a fast Fourier transform (FFT) to reflectivity data results in a single peak. Changes in the intensity of the FFT peak are monitored. Thus, target bacteria capture onto the biosensor surface, through antibody-antigen interactions, induces measurable changes in the intensity of the FFT peaks, allowing for a 'real time' observation of bacteria attachment.

The mesoporous Si film, fabricated by an electrochemical anodization process, is conjugated with monoclonal antibodies, specific to the target bacteria. The immobilization, immunoactivity and specificity of the antibodies are confirmed by fluorescent labeling experiments. Once the biosensor is exposed to the target bacteria, the cells are directly captured onto the antibody-modified porous Si surface. These specific capturing events result in intensity changes in the thin-film optical interference spectrum of the biosensor. We demonstrate that these biosensors can detect relatively low bacteria concentrations (detection limit of 104 cells/ml) in less than an hour.

Introduction

Early and accurate identification of pathogenic bacteria is extremely important for food and water safety, environmental monitoring, and point-of-care diagnostics1. As traditional microbiology techniques are time consuming, laborious, and lack the ability to detect microorganisms in "real-time" or outside the laboratory environment, biosensors are evolving to meet these challenges2-5.

In recent years, porous Si (PSi) has emerged as a promising platform for the design of sensors and biosensors6-20. Over the past decade numerous studies regarding PSi-based optical sensors and biosensors were published21,22. The nanostructured PSi layer is typically fabricated by electrochemical anodic etching from a single-crystal Si wafer. The resulting PSi nanomaterials exhibit many advantageous characteristics, such as large surface and free volume, pore sizes that can be controlled and tunable optical properties10,16. The optical properties of the PSi layer, such as photoluminescence8,11 and white light reflectance-based interferometry7,19, are strongly influenced by environmental conditions. Capture of guest molecules/target analytes within the porous layer results in a change in the average refractive index of the film, observed as a modulation in the photoluminescence spectrum or as a wavelength shift in the reflectivity spectrum10.

Although the vast innovation in PSi optical biosensor technology, there are only few reports on PSi-based platforms for bacteria detection6,8,20,23-29. In addition, most of these proof-of-concept studies have demonstrated "indirect" bacteria detection. Thus, generally prior lysis of the cells is required to extract the targeted protein/DNA fragments, characteristic to the studied bacteria29. Our approach is to directly capture the target bacteria cells onto the PSi biosensor. Therefore, monoclonal antibodies, which are specific to target bacteria, are immobilized onto the porous surface. Binding of bacteria cells, via antibody-antigen interactions, onto the surface of the biosensor induce changes in the amplitude (intensity) of the reflectivity spectrum24-26.

In this work, we report on the construction of an optical PSi-based biosensor and demonstrate its application as a label-free biosensing platform for the detection of Escherichia coli (E. coli) K12 bacteria (used as a model microorganism).The monitored optical signal is the light reflected from the PSi nanostructure due to Fabry-Pérot thin film interference (Figure 1A). Changes in the light amplitude/intensity are correlated to specific immobilization of the target bacteria cells onto the biosensor surface, allowing for rapid detection and quantification of the bacteria.

Protocol

1. Preparation of Oxidized Porous SiO2

  1. Etch Si wafers (single side polished on the <100> face and heavily doped, p-type, 0.0008 Ω·cm) in a 3:1 (v/v) solution of aqueous HF and absolute ethanol for 30 sEC at a constant current density of 385 mA/cm2. Please note that HF is a highly corrosive liquid, and it should be handled with extreme care.
  2. Rinse the surface of the resulting porous Si (PSi) film with absolute ethanol several times; dry the films under a dry nitrogen gas.
  3. Oxidize the freshly-etched PSi samples in a tube furnace at 800 °C for 1 hr in ambient air (place the sample in the furnace at room temperature, heat the furnace to 800 °C, leave in furnace for 1 hr, turn off the furnace and remove the samples from the furnace only at room temperature).

2. Biofunctionalization of PSiO2 Scaffolds

  1. Incubate an oxidized PSi (PSiO2) sample for 1 hr in mercaptopropyl(trimethoxysilane-3) 95% (MPTS) solution (108 mM in toluene).
  2. Rinse the silane-treated PSiO2 sample with toluene, methanol, and acetone; dry under a dry nitrogen gas.
  3. Incubate the silane-modified PSiO2 sample for 30 min in 1 ml of 100 mM PEO-iodoacetyl biotin solution.
  4. Rinse the biotin-treated PSiO2 sample with 0.1 M phosphate buffered saline (PBS) solution several times.
  5. Incubate the biotin-modified PSiO2 sample for 30 min in 1 ml of 100 μg/ml streptavidin (SA) solution.
  6. Rinse the SA-treated PSiO2 sample with 0.1 M PBS solution several times.
  7. Incubate the resulting SA-modified PSiO2 sample for 30 min in 1 ml of 100 μg/ml biotinylated E. coli monoclonal antibody (Immunoglobulin G, IgG) solution or with 100 μg/ml biotinylated-rabbit IgG (as a model for a monoclonal antibody).

3. Fluorescent Labeling and Fluorescence Microscopy

  1. Incubate the IgG-modified surfaces with 15 μg/ml fluorescein (FITC) tagged anti rabbit IgG for 40 min and with 15 μg/ml fluorescein (FITC) tagged anti mouse IgG as a control.
  2. Rinse the modified samples with 0.1 M PBS solution several times.
  3. Examine the samples under a fluorescence microscope.

4. Bacteria Culture

  1. Cultivate E. coli K12 bacteria in a 10 ml tube with 5 ml of Luria Bertani (LB) medium (medium composition in 1 L of deionized water: 5 g of NaCl, 5 g of yeast extract, and 10 g of tryptone). Incubate the bacteria overnight shaking at 37 °C.
  2. Monitor the bacteria concentration by reading the optical density (OD) at a wavelength of 600 nm. After overnight growth in LB medium, read the OD600 using a spectrophotometer to determine the bacterial concentration. The number of cells is directly proportional to the OD600 measurements (1 OD600 = 108 cells/ml).

5. Bacteria Sensing

  1. Place the IgG-modified PSiO2 and neat PSiO2 (as the control) samples in a custom-made Plexiglas flow cell. Fix the flow cell to ensure that the sample reflectivity is measured at the same spot during all the measurements.
  2. Incubate the samples with E. coli K12 suspension (104 cell/ml) for 30 min at room temperature. Then remove the bacteria suspension by flushing the cell with 0.85% w/v saline solution for 30 min.
  3. Monitor the changes in the reflectivity data throughout the experiment. All optical measurements need to be carried out in an aqueous surrounding. Spectra should be collected using a CCD spectrometer and analyzed by applying fast Fourier transform (FFT), as previously described25,26 .
  4. Confirm the presence of the bacteria on the biosensor surface, by observation of the samples under an upright light microscope immediately after the biosensing experiment.

Results

Oxidized PSi (PSiO2) films are prepared as described in the Protocol Text section. Figure 1B shows a high-resolution scanning electron micrograph of the resulting PSi film after thermal oxidation. The PSiO2 layer is characterized by well-defined cylindrical pores with a diameter in the range of 30-80 nm.

The monoclonal antibody (IgG) molecules are grafted onto the PSiO2 surfaces by using a well-established silanization technology coupled with a...

Discussion

A label-free optical immunosensor, based on a PSiO2 nanostructure (a Fabry-Pérot thin film) is fabricated, and its potential applicability as a biosensor for bacteria detection is confirmed.

Modifications and troubleshooting

One of the major concerns when designing an immunosensor is the susceptibility of antibodies to undergo undesired conformation changes during deposition and patterning onto the solid substrate, which may lead to a decrease in the bi...

Disclosures

The authors declare no competing financial interests.

Acknowledgements

This work was supported by the Israel Science Foundation (grant No. 1118/08 and grant No. 1146/12) and the Minna Kroll Memorial Research Fund. E.S gratefully acknowledges the financial support of the Russell Berrie Nanotechnology Institute.

Materials

NameCompanyCatalog NumberComments
Si waferSiltronix Corp.Highly-B-doped, p-type, 0.0008 Ω-cm resistivity, <100> oriented
Aqueous HF (48%)Merck101513
Ethanol absoluteMerck818760
PBS buffer solution (pH 7.4)prepared by dissolving 50 mM Na2HPO4, 17 mM NaH2PO4, and 68 mM NaCl in Milli-Q water (18.2 MΩ)
Saline 0.85% w/vprepared by dissolving 0.85 g NaCl in 100 ml Milli-Q water (18.2 MΩ)
95% (3-Mercaptopropyl)trimethoxysilane (MPTS)Sigma Aldrich Chemicals175617
PEO-iodoacetyl biotinSigma Aldrich ChemicalsB2059
Streptavidin (SA)Jackson ImmunoResearch Labs Inc.016-000-114
Fluorescein (DTAF)-streptavidinJackson ImmunoResearch Labs Inc.016-010-084
Biotinylated-rabbit IgGJackson ImmunoResearch Labs Inc.011-060-003
Fluorescently tagged anti-rabbit IgGJackson ImmunoResearch Labs Inc.111-095-003
Fluorescently tagged anti-mouse IgGJackson ImmunoResearch Labs Inc.115-095-003
Biotinylated E. coli antibodyJackson ImmunoResearch Labs Inc.1007
E. coli (K-12)was generously supplied by Prof. Sima Yaron, Technion

References

  1. Velusamy, V., et al. An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnol. Adv. 28 (2), 232-23 (2010).
  2. Doyle, M. P., Beuchat, L. R., Montville, T. J. . Food Microbiol.: Fundamentals and Front. 2, (2001).
  3. Radke, S. M., Alocilja, E. C. A microfabricated biosensor for detecting foodborne bioterrorism agents. IEEE Sens. J. 5 (4), 744 (2005).
  4. Glynn, B., et al. Current and emerging molecular diagnostic technologies applicable to bacterial food safety. Int. J. of Dairy Technol. 59 (2), 126 (2006).
  5. Leonard, P., et al. Advances in biosensors for detection of pathogens in food and water. Enzyme Microb. Technol. 32 (1), 3 (2003).
  6. Alvarez, S. D., et al. Using a porous silicon photonic crystal for bacterial cell-based biosensing. Physica Status Solidi a-Applications and Materials Science. 204 (5), 1439 (2007).
  7. Archer, M., et al. Electrical porous silicon microarray for DNA hybridization detection. Micro- and Nanosystems. 782, 385 (2004).
  8. Chan, S., Horner, S. R., Fauchet, P. M., Miller, B. L. Identification of Gram Negative Bacteria Using Nanoscale Silicon Microcavities. J. Am. Chem. Soc. 123, 11797 (2001).
  9. Dancil, K. -. P. S., Greiner, D. P., Sailor, M. J., Canham, L. T., Sailor, M. J., Tanaka, K., Tsai, C. C. . Development of a Porous Silicon Based Biosensor. 536, 557-562 (1999).
  10. D'Auria, S., et al. Nanostructured silicon-based biosensors for the selective identification of analytes of social interest. J Phys - Condens Matter. 18 (33), S2019 (2006).
  11. de Leon, S. B., et al. Neurons culturing and biophotonic sensing using porous silicon. Appl Phys Lett. 84 (22), 4361 (2004).
  12. Janshoff, A., et al. Macroporous p-type silicon Fabry-Perot layers. Fabrication, characterization, and applications in biosensing. J. Am. Chem. Soc. 120 (46), 12108 (1998).
  13. Orosco, M. M., Pacholski, C., Miskelly, G. M., Sailor, M. J. Protein-coated porous silicon photonic crystals for amplified optical detection of protease activity. Adv. Mater. 18, 1393 (2006).
  14. Pacholski, C., et al. Biosensing using porous silicon double-layer interferometers: reflective interferometric Fourier transform spectroscopy. J. Am. Chem. Soc. 127 (33), 11636 (2005).
  15. Pacholski, C., et al. Reflective Interferometric Fourier Transform Spectroscopy: A Self-Compensating Label-Free Immunosensor Using Double-layers of Porous SiO2. J. Am. Chem. Soc. 128, 4250 (2006).
  16. Sailor, M. J., Link, J. R. Smart Dust: nanostructured devices in a grain of sand. Chem. Comm. , 1375 (2005).
  17. Schwartz, M. P., Alvarez, S. D., Sailor, M. J. Porous SiO2 interferometric biosensor for quantitative determination of protein interactions: Binding of protein a to immunoglobulins derived from different species. Anal. Chem. 79 (1), 327 (2007).
  18. Schwartz, M. i. c. h. a. e. l. P., et al. The smart petri dish: A nanostructured photonic crystal for real-time monitoring of living cells. Langmuir. 22, 7084 (2006).
  19. Stewart, M. P., Buriak, J. M. Chemical and biological applications of porous silicon technology. Adv. Mater. 12 (12), 859 (2000).
  20. Zhang, D., Alocilja, E. C. Characterization of nanoporous silicon-based DNA biosensor for the detection of Salmonella enteritidis. IEEE Sens J. 8 (5-6), 775 (2008).
  21. Bonanno, L. M., Segal, E. Nanostructured porous silicon-polymer-based hybrids: from biosensing to drug delivery. Nanomedicine. 6 (10), 1755 (2011).
  22. Jane, A., Dronov, R., Hodges, A., Voelcker, N. H. Porous silicon biosensors on the advance. Trends Biotechnol. 27 (4), 230 (2009).
  23. Li, S., Huang, J., Cai, L. A porous silicon optical microcavity for sensitive bacteria detection. Nanotechnology. 22 (42), 425502 (2011).
  24. Massad-Ivanir, N., Shtenberg, G., Segal, E., Zahavy, E., Ordentlich, A., Yitzhaki, S., Shafferman, A. . Nano Bio-Technology for Biomedical and Diagnostics Research. 733, (2012).
  25. Massad-Ivanir, N., et al. Engineering Nanostructured Porous SiO2 Surfaces for Bacteria Detection via "Direct Cell Capture". Anal. Chem. 83 (9), 3282-32 (2011).
  26. Massad-Ivanir, N., Shtenberg, G., Zeidman, T., Segal, E. Construction and characterization of porous SiO2/hydrogel hybrids as optical biosensors for rapid detection of bacteria. Adv Funct Mater. 20 (14), 2269-22 (2010).
  27. Mathew, F. P., Alocilja, E. C. Porous silicon-based biosensor for pathogen detection. Biosens. Bioelectron. 20 (8), 1656 (2005).
  28. Ouyang, H., Archer, M., Fauchet, P. M. . Frontiers in Surface Nanophotonics. 133, 49 (2007).
  29. Ouyang, H., DeLouise, L. A., Miller, B. L., Fauchet, P. M. Label-free quantitative detection of protein using macroporous silicon photonic bandgap biosensors. Anal. Chem. 79 (4), 1502-15 (2007).
  30. Hermanson, G. T. . Bioconjugate Techniques. , (1996).
  31. Piervincenzi, R. T., Reichert, W. M., Hellinga, H. W. Genetic engineering of a single-chain antibody fragment for surface immobilization in an optical biosensor. Biosensors and Bioelectronics. 13 (3-4), 305 (1998).
  32. Saerens, D., Huang, L., Bonroy, K., Muyldermans, S. Antibody Fragments as Probe in Biosensor Development. Sensors. 8 (8), 4669 (2008).
  33. Shtenberg, G., et al. Picking up the Pieces: A Generic Porous Si Biosensor for Probing the Proteolytic Products of Enzymes. Anal. Chem. 85 (3), 1951 (2013).
  34. Bonanno, L. M., DeLouise, L. A. Steric Crowding Effects on Target Detection in an Affinity Biosensor. Langmuir. 23 (10), 5817 (2007).
  35. Banada, P. P., Bhunia, A. K., Mohammed, E., Zourob, S., Turner, A. P. F. . Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems. , 567 (2008).
  36. Poma, A., Whitcombe, M., Piletsky, S., Whitcombe, M. J., Piletsky, S. A. . Designing receptores for the next generation of biosensors. , 105 (2013).
  37. Dudak, F. C., Boyaci, I. H. Development of an immunosensor based on surface plasmon resonance for enumeration of Escherichia coli in water samples. Food Res. Int. 40 (7), 803 (2007).
  38. Dudak, F. C., Boyaci, I. H. Rapid and label-free bacteria detection by surface plasmon resonance (SPR) biosensors. Biotechn J. 4 (7), 1003 (2009).
  39. Skottrup, P. D., Nicolaisen, M., Justesen, A. F. Towards on-site pathogen detection using antibody-based sensors. Biosens. Bioelectron. 24 (3), 339 (2008).
  40. Taylor, A. D., Ladd, J., Homola, J., Jiang, S. . Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems. , 83 (2008).

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Keywords Optical BiosensorMesoporous SiliconEscherichia ColiLabel free DetectionAntibody antigen InteractionFabry P rot InterferenceFast Fourier TransformReal time MonitoringElectrochemical AnodizationFluorescent Labeling

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved