A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Transabdominal ultrasound is described as an effective, noninvasive means for assessing reproductive status in Reeves' muntjac deer. These methods can be used to achieve early pregnancy diagnosis and to evaluate fetal viability. Future applications of this technique include estimation of gestational age and effects of maternal disease on fetal development.
Reeves' muntjac deer (Muntiacus reevesi) are a small cervid species native to southeast Asia, and are currently being investigated as a potential model of prion disease transmission and pathogenesis. Vertical transmission is an area of interest among researchers studying infectious diseases, including prion disease, and these investigations require efficient methods for evaluating the effects of maternal infection on reproductive performance. Ultrasonographic examination is a well-established tool for diagnosing pregnancy and assessing fetal health in many animal species1-7, including several species of farmed cervids8-19, however this technique has not been described in Reeves' muntjac deer. Here we describe the application of transabdominal ultrasound to detect pregnancy in muntjac does and to evaluate fetal growth and development throughout the gestational period. Using this procedure, pregnant animals were identified as early as 35 days following doe-buck pairing and this was an effective means to safely monitor the pregnancy at regular intervals. Future goals of this work will include establishing normal fetal measurement references for estimation of gestational age, determining sensitivity and specificity of the technique for diagnosing pregnancy at various stages of gestation, and identifying variations in fetal growth and development under different experimental conditions.
Ultrasonographic examination is a well-described method of pregnancy diagnosis in cattle1, sheep2,3, goats4, horses5, companion animals6,7, and other domestic animal species. This imaging modality has also been identified as a valuable tool for pregnancy detection and fetal age estimation in several species of captive cervids, including fallow deer8-11, red deer12-16, Hokkaido sika deer17, and reindeer18,19. In many cases, ultrasonography has produced higher accuracy rates than other mechanisms of pregnancy detection, such as serum progesterone or pregnancy-associated glycoprotein analysis9,18. Furthermore, ultrasonographic visualization of the reproductive tract can provide additional information regarding fetal viability, gestational age, and identification of developmental abnormalities that would otherwise be difficult to assess. The utility of ultrasonography for evaluating reproductive status suggests that this methodology should be adapted to other species in which active breeding programs are used.
Reeves' muntjac deer (Muntiacus reevesi) are a small cervid species native to southeast Asia20. While the reproductive cycle of these animals is not well-characterized in their native territories, studies of feral populations in parts of southern England have improved understanding of their breeding patterns20. Unlike most cervids, Reeves' muntjac appear to breed year-round, with no apparent seasonal fawning peaks20-22. Female muntjac typically give birth to a single fawn following a 210-day gestation period, and reliably enter a postpartum estrus within 24 hr20-22. Does that do not conceive during this postpartum period will return to estrus approximately 24-25 days later20. In captive situations, reproduction is typically achieved by housing does with one or more intact male. This system produces satisfactory conception rates and requires little technical skill for personnel, however exact breeding dates are difficult, if not impossible, to determine.
Muntjac are commonly used in cytogenetic studies due to the wide range of diploid chromosome numbers and high rate of karyotypic diversification among the different species23. These animals are also currently being investigated as a model of prion disease pathogenesis and transmission, with particular interest placed on the study of vertical transmission of chronic wasting disease (CWD) in cervids. The importance of the muntjac in a number of different research applications suggests that improved reproductive technologies should be established to complement current investigative procedures. Specifically, noninvasive mechanisms to assess the gestational period could potentially elucidate critical variations in reproductive performance and fetal growth and development under different experimental conditions. Furthermore, the development of real-time fetal measurement references would be potentially valuable in estimating gestational age in situations where breeding dates cannot be determined. Previous studies have described mechanisms for using fetal measurements, such as crown-rump length (CRL), chest depth (CD), and head length (HL) to estimate the approximate stage of gestation in cervid species11-14, 16,17. Additionally, some of these studies have also established guidelines describing when specific developmental milestones, such as skeletal mineralization or fetal heartbeat, can be identified8-19. While these data may be useful to help guide reproductive ultrasound analysis in the muntjac, most of the other cervid species studied have much larger body size and longer gestational periods, reducing the translational value of these studies for muntjac applications.
The protocol outlined here describes transabdominal ultrasonography of the female muntjac for the purposes of diagnosing and monitoring pregnancy. Successful execution of this protocol can facilitate early pregnancy detection and evaluation of fetal growth and development. This technique has valuable applications in the conduct of studies investigating reproduction, in utero development, or vertical transmission of infectious diseases in a small cervid model and may also be useful for clinical purposes in captive breeding operations.
1. Procedural Preparation
All animal procedures described have been reviewed and approved by the Institutional Animal Care and Use Committee at Colorado State University, an Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC), Intl. accredited institution.
2. Transabdominal Reproductive Ultrasound Examination
3. Obtaining Fetal Measurements
Note: Gestational age in many domestic animal species can be estimated using established reference ranges for fetal measurements obtained from ultrasound examination. The most commonly used measurements include straight crown-rump length (SCRL), chest depth (CD), and head length (HL)17. While sufficient data has not yet been collected to develop reliable gestational age guidelines in Reeves' muntjac deer, measurements may be collected in order to begin establishing these references. Fetal heart rate (FHR) has been shown in other species of cervid and ruminant to increase linearly as gestation progresses to a certain point (typically around day 60 of gestation), at which time the heart rate begins to decrease17. FHR may be used to estimate gestational age in conjunction with other ultrasound observations, however it is more commonly used as a measure of fetal viability17,24. FHR has been calculated in Reeves' muntjac as early as 35 days post-observed mating.
4. Procedural Conclusions and Recovery
Using the protocol described here, pregnancy can be diagnosed and monitored in Reeve's muntjac deer with minimally invasive techniques. The earliest time point that pregnancy could be detected by the authors was approximately 35 days following observed mating behavior.
In the early stages of gestation, pregnancy was diagnosed by visualizing a fluid-filled uterus identified as an anechoic space in the caudal abdomen. Within the uterus, the developing embryo appeared as a hyperechoic, ovoid ...
This protocol describes the application of transabdominal ultrasonography for pregnancy diagnosis in Reeves' muntjac deer. Consistent with other ultrasound studies, appropriate equipment and technical proficiency are imperative to a successful reproductive examination of the muntjac doe. Careful review of basic mammalian anatomy, the physical principles of diagnostic ultrasound, and the typical ultrasonographic appearance of the abdominal viscera will aid in the reduction of mistaken diagnoses. Furthermore, selection...
The authors have nothing to disclose.
The authors wish to thank Jeanette Hayes-Klug and Kelly Anderson for management of the muntjac colony, Dr. Alan Young for introducing us to the muntjac and Mr. Cleve Tedford of Cervid Solutions Inc. for providing the seed muntjac for this project. This work was supported by NIH grant R01AI093634.
Name | Company | Catalog Number | Comments |
Butorphanol tartrate (Torbugesic) (0.45 mg/kg) | Fort Dodge Animal Health, Fort Dodge, Iowa | NADA 135-780 | |
Azaperone tartrate (0.035 mg/kg) | ZooPharm | ||
Medetomidine HCl (0.04 mg/kg) | ZooPharm | ||
Ultrasound contact gel | Medline, Mundelein, Illinois | MDS092005 | |
Atipamezole hydrochloride (Antisedan) (0.25 mg/kg) | Orion Corporation, Espoo, Finland | NADA 141-033 | |
Table 2 Equipment | |||
Name of Equipment | Company | Catalog Number | Comments |
V-trough (optional) | N/A | N/A | Animal may be supported in dorsal recumbency on a standard examination table or other surface without the use of a V-trough |
Electrical clippers or razor blades for hair removal | Oster, McMinnville, Tennessee | 78005-140 | |
Ultrasound system: Ibex Pro portable ultrasound | E.I. Medical Imaging, Loveland, CO | Ibex Pro | |
5-10 MHz transducer: CL3.8 5-2.5 MHz 60 mm curved linear array | E.I. Medical Imaging, Loveland, CO | 290420 | |
3 ml syringes | Covidien | 1.18E+09 | |
22 G needles | Covidien | 8.88E+09 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved