A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We introduce a surgical method to induce experimental ischemia/reperfusion (I/R) injury to simulate myocardial infarction (MI) in mouse models that allows for more clarity in positioning of the ligation on the left anterior descending artery (LAD) to increase the reproducibility of MI experiments in mice.
Acute or chronic myocardial infarction (MI) are cardiovascular events resulting in high morbidity and mortality. Establishing the pathological mechanisms at work during MI and developing effective therapeutic approaches requires methodology to reproducibly simulate the clinical incidence and reflect the pathophysiological changes associated with MI. Here, we describe a surgical method to induce MI in mouse models that can be used for short-term ischemia-reperfusion (I/R) injury as well as permanent ligation. The major advantage of this method is to facilitate location of the left anterior descending artery (LAD) to allow for accurate ligation of this artery to induce ischemia in the left ventricle of the mouse heart. Accurate positioning of the ligature on the LAD increases reproducibility of infarct size and thus produces more reliable results. Greater precision in placement of the ligature will improve the standard surgical approaches to simulate MI in mice, thus reducing the number of experimental animals necessary for statistically relevant studies and improving our understanding of the mechanisms producing cardiac dysfunction following MI. This mouse model of MI is also useful for the preclinical testing of treatments targeting myocardial damage following MI.
Animal models of myocardial infarction (MI) are important in research of the complex pathophysiology of ischemic heart disease1. Ischemia-reperfusion (I/R) injury is a major contributor the myocardial damage generated during MI. The initial ischemia injury produced by occlusion of the coronary circulation can be minimized in MI patients by the use of angioplasty to restore perfusion in a timely fashion. While this intervention has greatly reduced the number of deaths due to acute MI, restoration of blood flow into the ischemic area results in I/R injury that leads to death of cardiomyocytes. This loss of myocardial mass contributes to decreased cardiac output and progression towards heart failure. Thus, study of the mechanisms that result in cardiomyocyte death from I/R injury is an important line of inquiry in cardiovascular research. Surgical coronary ligation is a useful experimental technique to induce models of MI in various animal types, including the rat, dog and pig. Publications in different laboratories have introduced various methods on the establishment of the mice heart model of I/R injury2,3. In order to gain insight into these mechanisms we must have access to reliable animal models that can reproduce several aspects of MI pathology. Development of such models is also essential for testing therapeutic approaches for treatment of MI and associated I/R injury.
Most of the currently available surgical techniques to simulate MI in experimental animals involve surgical dissection into the chest cavity to expose the left anterior descending artery (LAD) that is then occluded by a ligature for defined period in time to produce the ischemic event. Then that ligature can be removed to allow for reperfusion of the ischemic area and generation of I/R injury. One major limitation of these approaches in that the position of the literature on the LAD is not always accurately reproduced, which can lead to variation in the severity of the MI induced by this approach. Most available techniques only generally described the approximate location of the LAD in the anterior wall of the heart. As the branching and direction of the LAD can vary in individual animals the location is not always fixed and can be easily confused4,5, leading to potential complications during surgery6. The consequences of improper placement of the ligature can run from variability in the size of the infarct induced in the left ventricle to completely compromising the specificity of the model. Here we present a modified method for myocardial I/R and permanent ligation in mice that allows for improved accuracy of placement of the ligature on the LAD. By applying specific approaches for the initial incision and internal dissection, as well as the use of manipulations to lift the atria to allow better appreciation of the LAD and the site where it emerges from the aorta. Establishing the position on the LAD and its origin provides the opportunity to ligate the LAD in a reproducible fashion. This model of myocardial I/R and permanent ligation not only decreases the variation in infarct size following surgery, it can also decrease the incidence of excessive bleeding during the operation.
This animal protocol was approved by and is in accordance with the guidelines and regulations set forth by the Institutional Animal Care and Use Committee (IACUC) at The Ohio State University. All policies developed by the local IACUC are in compliance with the Animal Experimentation Guide developed by Office of Laboratory Animal Welfare at the National Institutes of Health.
1. Anesthesia and Endotracheal Intubation
2. Ventilation and Fixation
3. Thoracotomy
4. Positioning LAD
5. LAD Ligation
6. Reperfusion
7. Chest Closure and Postoperative Care
8. Measurement of Myocardial Infarct Size
9. Measurement of Cardiac Enzyme Levels
Measure cardiac troponin I (cTnI) levels in the serum of mice by obtaining blood from the portal vein and then isolating serum by centrifugation. Serum cTnI levels are then determined with a quantitative rapid cTnI assay12.
Following 24 hours of reperfusion, analysis of infarct size and the area-at-risk (AAR), by phthalo blue dye and triphenyl tetrazolium chloride (TTC), ligation of the LAD can be confirmed by observing blanching of myocardial tissue distal to the suture as well as dysfunction of the anterior wall. Reperfusion can be verified by the return of red color to the myocardial tissue and the demonstration of some recovery of anterior wall motion.
Infarct areas (white) should be distinguishable from area...
Mouse myocardial ischemia-reperfusion models are an effective method for cardiovascular research to simulate clinical acute or chronic heart disease13,14. Significant effort has been applied to develop and refine surgical approaches that produce ischemic events and reperfusion damage in the hearts of several different animal types. While there are particular advantages to the use of different animals systems, the mouse has characteristics that have led to extensive interest in producing myocardial I/R in the m...
Dr. Noah Weisleder is a Founder and Chief Scientific Officer at TRIM-edicine, Inc.
Research reported in this publication was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases, part of the National Institutes of Health, under Award Number R01-AR063084. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Name | Company | Catalog Number | Comments |
PhysioSuite with RightTemp Homeothermic Warming | Kent Scientific Corp | PS-RT | |
Light source | Zeiss | KL 1500 LCD | |
Mouse Heart Slicer Matrix | Zivic Miller | HSMS001-1 | |
Micro Tray - Base, Lid, & Mat (6.0 x 10 x 0.75) | Fine Science Tools | 6100A | |
2,3,5-Triphenyltetrazolium chloride | Sigma Aldrich | T8877 | |
Buprenorphine (Buprenex Injectable) | Reckitt Benkiser Healthcare | NDC 12496-0757-1 | |
bupivacaine | Hospira | NDC 0409-1163-01 | |
Isoflurane | Abbott | NDC 5260-04-05 | |
Betadine Soultion | Purdue Pharma | 25655-41-8 | |
Mouse Cardiac Troponin T(cTnT) ELISA | Kamiya Biomedical Company | KT-58997 | |
Fine Scissors | Fine Science Tools | 14040-10 | |
Dumont #5 Forceps | Fine Science Tools | 11251-30 | |
Dumont #3 Forceps | Fine Science Tools | 11231-30 | |
Castroviejo Micro Needle Holders | Fine Science Tools | 12060-01 | |
Slim Elongated Needle Holder | Fine Science Tools | 12005-15 | |
Round Handled Needle Holders | Fine Science Tools | 12075-12 | |
Omano Trinocular Stereoscope | Microscope.com | OM99-V6 | |
SB2 Boom Stand with Universal Arm | Microscope.com | V6 | |
Tracheal Tube, 0.5 mm, 1/16 in Y | Kent Scientific Corp | RSP05T16 | |
Anesthesia Systems for Rodents and Small Animals | VetEquip, Inc | 901807 | |
4-0 silk taper suture | Sharpoint™ Products | DC-2515N | |
6-0 silk taper suture | Sharpoint™ Products | DC-2150N |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved