A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The malaria parasite invades and replicates within red blood cells. The accurate assessment of merozoite invasion and parasitemia is therefore crucial in assessing the course of malaria infection. Here we describe a flow cytometry based protocol for the measurement of these parameters in a mouse model of malaria.
During blood stage infection, malaria parasites invade, mature, and replicate within red blood cells (RBCs). This results in a regular growth cycle and an exponential increase in the proportion of malaria infected RBCs, known as parasitemia. We describe a flow cytometry based protocol which utilizes a combination of the DNA dye Hoechst, and the mitochondrial membrane potential dye, JC-1, to identify RBCs which contain parasites and therefore the parasitemia, of in vivo blood samples from Plasmodium chabaudi adami DS infected mice. Using this approach, in combination with fluorescently conjugated antibodies, parasitized RBCs can be distinguished from leukocytes, RBC progenitors, and RBCs containing Howell-Jolly bodies (HJ-RBCs), with a limit of detection of 0.007% parasitemia. Additionally, we outline a method for the comparative assessment of merozoite invasion into two different RBC populations. In this assay RBCs, labeled with two distinct compounds identifiable by flow cytometry, are transfused into infected mice. The relative rate of invasion into the two populations can then be assessed by flow cytometry based on the proportion of parasitized RBCs in each population over time. This combined approach allows the accurate measurement of both parasitemia and merozoite invasion in an in vivo model of malaria infection.
The clinical symptoms associated with malaria occur during the Plasmodium parasite’s asexual replicative cycle within red blood cells (RBCs). Merozoites, released during the liver stage of infection, quickly attach to and invade RBCs. After gaining entry into the cell, the parasite grows and matures, eventually undergoing schizogony, splitting open the cell, and releasing a cluster of newly formed merozoites which go on to repeat this cycle. As such, an assessment of malaria infection often involves monitoring both parasitemia, which is the percentage of RBCs appropriated by one or more parasites, and the rate of merozoite invasion into uninfected RBCs.
Flow cytometry is a powerful tool which can be used to record the properties of vast numbers of cells in a short period of time. This technique has clear applicability for the measurement of malaria parasitemia and invasion, and offers several advantages over traditional microscopy techniques. These include the accurate measurement of very low parasitemia, which would be prohibitively time consuming by microscopy, the unbiased nature of the measurement, and the ability to measure multiple cell parameters simultaneously. Flow cytometry is widely used to determine both parasitemia and merozoite invasion in in vitro culture1-9, however, techniques for measuring these parameters in vivo are less well developed, and can be complicated by the presence of additional cell types which interfere with analysis. No assays have been described for measurement of in vivo invasion, and while some assays exist for the analysis of in vivo parasitemia, these lack the ability to distinguish between parasitized RBCs (pRBCs) and RBCs containing Howell-Jolly bodies (HJ-RBCs)10-13. The later issue is particularly important as in mice HJ-RBCs may account for up to 0.9% of mature RBCs14-16, thereby preventing the accurate measurement of low parasitemia.
We have previously demonstrated an approach for the measurement of parasitemia and merozoite invasion in a rodent model of malaria infection14. Here, we provide a more detailed protocol and accompanying video. This approach builds on previous methodologies and allows for the accurate identification of parasitized RBCs, as distinct from leukocytes, RBC progenitors, and HJ-RBCs. Additionally, this assay allows the simultaneous measurement of merozoite invasion into two labeled RBC populations, a treated, or target, population, and a control population, thereby providing a robust platform for the assessment of invasion into different cell types.
All procedures were conducted in accordance with the policies of Macquarie University and conformed to the National Health and Medical Research Council (NHMRC) Australian code of practice. The work was performed under the agreement Ethics No ARA 2012/017 approved and obtained from the Animal Ethics Committee at Macquarie University. All experiments were performed on SJL/J mice unless otherwise stated.
1. Mice and Experimental Malaria Infection
2. Labeling of RBCs and Transfusion
3. Collection of Blood Samples and Preparation for Flow Cytometry
4. Flow Cytometry
5. Calculations and Statistics
Measurement of parasitemia.
For the measurement of parasitemia, blood cells should first be selected, and noise, debris and platelets excluded, based on FSC/SSC properties (Figure 2A). Depending on the cytometer used, single cells should then be selected based on either trigger pulse width (Figure 2B), or FSC peak height to area ratio (Figure 2C). Remaining events should consist of leukocytes, stained positive for APC eFluor 780, RBC progenitors ...
We have described a method for the measurement of both parasitemia and merozoite invasion of in vivo samples. In terms of parasitemia measurement, this method offers an advantage over previous methods10-13 in that HJ-RBCs can be distinguished from pRBCs, thereby reducing the number of false positive events. While HJ-RBCs are usually rare in humans, some studies report high levels in mice15,16 making the distinction between these cells and pRBCs important for the accurate measurement of rode...
The authors have nothing to disclose.
We acknowledge funding support from the National Health and Medical Research Council (grant APP605524, 490037 and 1047082), the Australian Research Council (grant DP12010061), the National Collaborative Research Infrastructure Strategy of Australia and the Education investment fund from the Department of Innovation, Industry, Science and Research. PML is a recipient of an Australian Postgraduate award.
Name | Company | Catalog Number | Comments |
bisBenzimide H 33342 trihydrochloride | Sigma-Aldrich | B2261 | Hoechst 33342. Store a 4 mM stock solution at -20 °C in distilled water |
Hoechst 34580 | Sigma-Aldrich | 63493 | Store a 2 mM stock solution at -20 °C in distilled water |
JC-1 Dye | Life Technologies | T-3168 | Store small aliquots of 6 mM stock solution at -20 °C in DMSO |
Anti-Mouse CD45 APC-eFluor 780 | eBioscience | 47-0451-80 | Clone 30-F11 |
Anti-Mouse CD71 PerCP-eFluor 710 | eBioscience | 46-0711-80 | Clone R17217 |
Atto 633 NHS ester | Sigma-Aldrich | 1464 | Atto 633-NHS. Store a 2 mg/ml stock solution at -20 °C in DMF |
EZ-Link Sulfo-NHS-LC-Biotin | Thermo Fisher Scientific | 21335 | Biotin-NHS. Store a 25 mg/ml stock solution at -20 °C in DMF |
Streptavidin PE-Cyanine7 | eBioscience | 25-4317-82 | Streptavidin PE-Cy7 |
Heparin | Sigma-Aldrich | H478 | |
35 µM filter cap tubes | Becton Dickinson | 352235 | |
Flow cytometer: BD LSRFortessa | Becton Dickinson | ||
Flow cytometer: BD FACSAria II | Becton Dickinson | ||
Flow cytometer: BD Influx | Becton Dickinson | ||
Flow cytometer: CyAn ADP Analyzer | Beckman Coulter |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved