Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

We describe whole-animal imaging and flow cytometry-based techniques for monitoring expansion of antigen-specific CD8+ T cells in response to immunization with nanoparticles in a murine model of vaccination.

Abstract

Traditional vaccine adjuvants, such as alum, elicit suboptimal CD8+ T cell responses. To address this major challenge in vaccine development, various nanoparticle systems have been engineered to mimic features of pathogens to improve antigen delivery to draining lymph nodes and increase antigen uptake by antigen-presenting cells, leading to new vaccine formulations optimized for induction of antigen-specific CD8+ T cell responses. In this article, we describe the synthesis of a “pathogen-mimicking” nanoparticle system, termed interbilayer-crosslinked multilamellar vesicles (ICMVs) that can serve as an effective vaccine carrier for co-delivery of subunit antigens and immunostimulatory agents and elicitation of potent cytotoxic CD8+ T lymphocyte (CTL) responses. We describe methods for characterizing hydrodynamic size and surface charge of vaccine nanoparticles with dynamic light scattering and zeta potential analyzer and present a confocal microscopy-based procedure to analyze nanoparticle-mediated antigen delivery to draining lymph nodes. Furthermore, we show a new bioluminescence whole-animal imaging technique utilizing adoptive transfer of luciferase-expressing, antigen-specific CD8+ T cells into recipient mice, followed by nanoparticle vaccination, which permits non-invasive interrogation of expansion and trafficking patterns of CTLs in real time. We also describe tetramer staining and flow cytometric analysis of peripheral blood mononuclear cells for longitudinal quantification of endogenous T cell responses in mice vaccinated with nanoparticles.

Introduction

Traditional vaccine development has mainly employed the empirical approach of trial-and-error. However, with the recent development of a wide array of biomaterials and discovery of molecular determinants of immune activation, it is now possible to rationally design vaccine formulations with biophysical and biochemical cues derived from pathogens1,2. In particular, various particulate drug delivery platforms have been examined as vaccine carriers as they can be co-loaded with subunit antigens and immunostimulatory agents, protect vaccine components from degradation, and enhance their co-delivery to antigen presenting cells (APCs) residing in lymph nodes (LNs....

Protocol

All experiments described in this protocol were approved by the University Committee on Use and Care of Animals (UCUCA) at University of Michigan and performed according to the established policies and guidelines.

1. Synthesis and Characterization of ICMVs Co-loaded with Protein Antigen and Adjuvant Molecules

  1. Mix 1:1 molar ratio of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-[4-(p-maleimidop.......

Representative Results

The steps involved in the synthesis of ICMVs are illustrated in Figure 16. Briefly, a lipid film containing any lipophilic drugs or fluorescent dyes is hydrated in the presence of hydrophilic drugs. Divalent cations, such as Ca2+, are added to drive fusion of anionic liposomes into multilamellar vesicles. Dithiol crosslinker, such as DTT, is added to “staple” maleimide-functionalized lipids on apposing lipid layers, and finally remaining external maleimide groups are que.......

Discussion

The protocol provided in this article describes the synthesis and characterization of a new lipid-based nanoparticle system, termed ICMVs, and provides the process of validating effectiveness of nanoparticle-based vaccine formulations to induce antigen-specific CD8+ T cell responses. ICMV synthesis is completed in all aqueous condition, which is a major advantage compared with other commonly used polymeric nanoparticle systems (e.g., poly(lactide-co-glycolide) acid particles), which typically require organic sol.......

Acknowledgements

This study was supported by the National Institute of Health grant 1K22AI097291-01 and by the National Center for Advancing Translational Sciences of the National Institutes of Health under Award Number UL1TR000433. We also acknowledge Prof. Darrell Irvine at MIT and Prof. Matthias Stephan at Fred Hutchinson Cancer Center for their contribution on the initial work on the vaccine nanoparticles and OT-I/Luc transgenic mice.

....

Materials

NameCompanyCatalog NumberComments
1. Synthesis and characterization of ICMVs co-loaded with protein antigen and adjuvant molecules
1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-[4-(p-maleimidophenyl)butyramide] (sodium salt) (MPB)Avanti Polar Lipids, INC.870012
1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)Avanti Polar Lipids, INC.850375
Monophosphoryl Lipid A (Synthetic) (PHAD™) (MPLA)Avanti Polar Lipids, INC.699800
20 mL glass vialsWheaton0334125D
Symphny Vacuum OvenVWR414004-580
Ovalbumin (OVA)Worthington3054
Bis-Tris Propane (BTP)FisherBP2943
Q125 Sonicator (125W/20kHz)QsonicaQ125-110
Dithiothreitol (DTT)FisherBP172
2 kDa Thiolated Polyethylene Glycol (PEG-SH)Laysan BioMPEG-SH-2000-1g
Malvern ZetaSizer Nano ZSP Malvern
ZetaSizer CuvettesMalvernDTS1070
2. Examination of lymph node draining of fluorescence-tagged ICMVs with confocal microscopy
1,1'-Dioctadecyl-3,3,3',3'-Tetramethylindodicarbocyanine, 4-Chlorobenzenesulfonate Salt (DID)Life TechnologiesD-7757
Alexa Fluor 555-succinimidyl ester (AF555-NHS)Life TechnologiesA37571
Tissue-Tek OCT freezing medium VWR25608-930
Tissue CryomoldsVWR25608-922
3. Monitoring expansion of antigen-specific, luciferase-expressing CD8+ T cells after nanoparticle vaccination with whole animal imaging
C57BL/6 miceJackson000664
Albino C57BL/6 miceJackson000058
OT-1 C57BL/6 miceJackson003831
70 μm nylon strainerBD352350
EasySep™ Mouse CD8+ T Cell Isolation KitStemCell19853
IVIS® whole animal imaging systemPerkin Elmer
4. Peptide-MHC tetramer staining of peripheral blood mononuclear cells (PBMCs) for flow cytometric analysis of antigen-specific CD8+ T cells
K2EDTA tubesBD365974
ACK lysis bufferLife TechnologiesA10492-01 
Anti-CD16/32 Fc BlockEbioscience14-0161-86
H-2Kb OVA TetramerMBLTS-5001-1C
Anti-CD8-APCBD553031
Anti-CD44-FITCBD553133
Anti-CD62L-PECy7Ebioscience25-0621-82
4′,6-Diamidino-2-phenylindole dihydrochloride (DAPI)SIGMAD8417-10MG
CyAn Flow CytometerBeckman Coulter
FlowJo SoftwareFlowJo

References

  1. Irvine, D. J., Swartz, M. A., Szeto, G. L. Engineering synthetic vaccines using cues from natural immunity. Nature materials. 12, 978-990 (2013).
  2. Moon, J. J., Huang, B., Irvine, D. J. Engineering nano- and microparticles to tune immuni....

Explore More Articles

Nanoparticle VaccineCD8 T CellWhole animal ImagingFlow CytometryAntigen specific T Cell ResponseInterbilayer crosslinked Multilamellar Vesicles ICMVsBioluminescence ImagingTetramer Staining

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved