A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Expression of malarial proteins in cell based systems remains challenging. We demonstrate two step and one step IVT (in vitro translation) cell free expression systems for expressing malarial recombinant rhoptry proteins from HeLa cells. We use a Ni-resin affinity based purification system to purify the rhoptry proteins.
Malaria causes significant global morbidity and mortality. No routine vaccine is currently available. One of the major reasons for lack of a vaccine is the challenge of identifying suitable vaccine candidates. Malarial proteins expressed using prokaryotic and eukaryotic cell based expression systems are poorly glycosylated, generally insoluble and undergo improper folding leading to reduced immunogenicity. The wheat germ, rabbit reticulocyte lysate and Escherichia coli lysate cell free expression systems are currently used for expression of malarial proteins. However, the length of expression time and improper glycosylation of proteins still remains a challenge. We demonstrate expression of Plasmodium proteins in vitro using HeLa based cell free expression systems, termed “in vitro human cell free expression systems”. The 2 HeLa based cell free expression systems transcribe mRNA in 75 min and 3 µl of transcribed mRNA is sufficient to translate proteins in 90 min. The 1-step expression system is a transcription and translation coupled expression system; the transcription and co-translation occurs in 3 hr. The process can also be extended for 6 hr by providing additional energy. In the 2-step expression system, mRNA is first transcribed and then added to the translation mix for protein expression. We describe how to express malaria proteins; a hydrophobic PF3D7_0114100 Maurer’s Cleft – 2 transmembrane (PfMC-2TM) protein, a hydrophilic PF3D7_0925900 protein and an armadillo repeats containing protein PF3D7_1361800, using the HeLa based cell free expression system. The proteins are expressed in micro volumes employing 2-step and 1-step expression strategies. An affinity purification method to purify 25 µl of proteins expressed using the in vitro human cell free expression system is also described. Protein yield is determined by Bradford’s assay and the expressed and purified proteins can be confirmed by western blotting analysis. Expressed recombinant proteins can be used for immunizations, immunoassays and protein sequencing.
In malaria research, expression of immunogenic proteins using prokaryotic or eukaryotic cell based systems remains a challenge. The A-T richness of the Plasmodium genome and unknown post translational mechanisms14,7, contribute to the difficulties associated with obtaining properly folded and immunogenic proteins for antibody production and vaccine studies. Prokaryotic systems such as Escherichia coli have been used for recombinant protein expression. Prokaryotic systems are low cost, effective, produce high yields of recombinant protein and have multiple cloning vectors. Host E. coli cells are easy to transform and cells grow rapidly. However, prokaryotic systems have limitations such as lack of amino acid substitution, post-translational modification, risk of contamination, heterogeneous products and accumulation of recombinant proteins within inclusion bodies24.
In a study by Mehlin et al. (2006), 1000 open reading frames (ORF) were expressed. Approximately 7% of the expressed proteins were soluble14. The insolubility observed is due to the biased nature of the genes and the high frequency of codons that are used ideally by the Plasmodium A-T rich genome14. An alternative strategy to overcome this problem has been developed by using plasmids or host cells containing tRNAs that recognize rare codons or codons that match the frequencies3. Even after performing these optimizations, very small portions of proteins are expressed as soluble, active and immunogenic14. The cell-free expression systems contain all the components necessary for transcription and translation such as ribosomes, initiation factors, elongation factors (translations factors), tRNA and aminoacyl-tRNA synthetases. Both transcription and translation reactions are coupled in one-step procedure11,29. The transcription reaction is performed in a tube before appropriate amount of mRNA is incubated with translation machinery in a different tube11,29. Although these methods are successful in Plasmodium sp. protein expression, a major drawback is the length of time for protein expression, which is approximately 22 hr29. In addition, the high cost of supplies for inclusion in the protocols29, the labor-intensive preparations of the cell lysate and inconsistencies in component preparations, make these systems unattainable. The main focus of researchers for development of a cell free expression system depends on factors such as rapid genetic modification, fast yields with high concentrations and straight forward lysate preparations1.
Eukaryotic systems such as yeast, mammalian cell lines, baculovirus mediated expression system, Tetrahymena thermophilia, Dictyostelium discoideum and parasitic expression systems such as Leishmania have been used for recombinant protein expression7. Eukaryotic systems share phylogenetic relationship and therefore also share characteristics such as glycosylation, acylation, disulphide bond formation, chaperone interaction, proteolysis and sub-cellular compartmentalization. Protein secretion events in eukaryotes prevent accumulation and decreases toxicity for expression systems13. The use of yeast systems is preferred as they are suitable for protein expression in large scale and for obtaining high yields4. Two P. falciparum proteins PfCP-29 and Pvs25 were produced using the yeast system4. However, a major drawback in the synthesis of most of the proteins was irregular N and O-glycosylation patterns, improper folding and truncation of proteins from their native form4.
The use of mammalian cells for synthesis of recombinant proteins is labor-intensive and it is expensive to maintain stable recombinant cell lines4. Therefore, mammalian cells have been limited for the analysis of protein signaling, protein interactions and parasite-host interactions and also for testing DNA vaccines4. The Human DNA and mRNA in vitro protein expression cell-free system described herein is a HeLa cell-derived mammalian-based system that expresses proteins in 3 hr. Proteins expressed using pT7CFE1-cHis expression vector have a C-terminal tag facilitating identification and purification. The HeLa based system is supplemented with translation initiation factors and a translation regulator, thereby enhancing the efficiency of the translation system. Proteins can be rapidly translated, screened, verified and processed for use in various immunologic and structural applications15.
Eukaryotic cell-free expression systems such as wheat germ and rabbit reticulocyte are currently used for the expression of various eukaryotic proteins including Plasmodium proteins11,29. In addition, E. coli based cell-free systems are also employed for eukaryotic protein expression11. Table 1 summarizes different cell free expression systems by comparing features of the systems as well as the ease of using the systems for protein expression. The human cell-free system in comparison to the others has the ability to perform post and co-translational modifications and is less expensive. Codon optimization is possible and all the reactions can be performed in 3 hr. The HeLa system is an ideal translation system for protein synthesis in the laboratory setting.
A major advantage of human cell free expression systems over other cell free systems is the availability of several different cell lines derived from different organs and tissues. Several varieties of cell free systems can be designed depending on the cell line. The extracts derived from mammalian cells have higher efficiency to synthesize large proteins than any other cell free expression systems. These cell free expression systems can also be used in diagnostic and protein characterization applications such as micro arrays30. The popular HeLa cell lines are most widely used to carry out the expression of proteins33. The endoplasmic reticulum in the HeLa cell lines is underdeveloped, leading to the absence of post-translational glycosylation modification activity33. However, this system is believed to be advantageous for Plasmodium protein synthesis as Plasmodium also lacks glycosylation post translation modification29. The HeLa cell free transcription-translation protocol is easy to perform, inexpensive and proteins can be expressed in 90 min, ready for purification and further downstream applications.
1. Preparation of Parasite Cell Cultures, Collection of Parasite Pellets
2. Preparing Plasmid Vector
3. Protein Expression Using in Vitro Human Cell Free Expression System
4. Purification of Expressed Recombinant Proteins
5. Coomassie (Bradford) Protein Assay 34
6. Western Blotting
Validation of the expressed recombinant proteins through reactivity with specific antibodies is an important first step in confirming the proper folding of the expressed proteins. Recombinant malarial proteins were expressed using the one step and two step in vitro human cell free expression systems. The recombinant proteins are purified Ni-chelating affinity method. We then used antisera against whole merozoite rhoptries in western blotting of SDS-PAGE separated recombinant proteins.
...
The important steps for successful expression of proteins using two step in vitro human cell free expression system and purification are: 1) successful amplification and cloning of genes into pT7CFE-CHis plasmid vector; 2) transcribing RNA at 30oC; 3) translation of protein at 30 °C in the presence of RNAse inhibitor; 4) developing the affinity based purification protocol using resin beads coated with Ni and 5) analyzing results on western blot using polyclonal and monoclonal antibodies. The important ste...
We do not have any competing financial interests in this study.
This research was supported by Cleveland State University Faculty Development Funds.
Name | Company | Catalog Number | Comments |
2-step in vitro human cell free expression system | Thermo Fisher | 88856 | Discontinued. Always store at -80 °C. Do not thaw in warm water |
1-step in vitro coupled translation system | Thermo fischer | 88860 | Always store at -80 °C. Do not thaw in warm water |
ProBond Purification system | Invitrogen | K850-01 | Store at RT |
Probond Nickel-Chelating Resin | Invitrogen | R801-01 | Store at 4oC. |
A+ Human Blood | Interstate Blood Bank | Store at 4 °C. |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved